AUTHOR

institution

 SPONS AGENCYPUB DATE
CONTRACT
NOTE
PUB TYPE

EDRS PRICE DESCRI PTORS

IDENTIFIERS

Taýor, Jōn̄ L., Ed:
Teacher Shoŕtage in Science and Mathematics: Myths, Realities, and Research. Proceedings of a Conference Sponsored by the National Institute of Education (Washington, District of Columbia, Febrūary 10-11, 1983).

Dingle Associates, Inc., Washington, $\bar{D} . \bar{C}$.
National Inst. of Education (ED), Washington, $\overline{D C}$.
Teaching and Learning Program.
Jan 84
N1E-D-83-0002
281p.; For a related document, see ED 231653 ; Coliected Works - Conference Proceedings (02i) --
Reports - Descriptive (i4i)
MF01/PCl̄ $\overline{2} 1$ ús Postage.
*Curriculum Development; Eduçational improvement; Elementary Secondary Education; ingher Education; *Mathematics education; Mathematics Instruction; Mathematics Teachers; Museums; Professional Recognition; program descriptions; *Research Needs; School Busiñess Relātionship; nscience education; Scíencé instruction; Science Teachers; *Teacher Education; *Teacher, Shortage
Mathematics Educati=n Research; *Science Education Reseārch

Abstract

This conference was designed to identify saijent elements of the national science/mathematics teacher shortage, add corollary data to the existing body of knowledge and to infiuence and guide future NIE research in the area. The proceedings include : welcoming and keynote addresses by, respectiveiy, Manuel J Justiz and T. H. Beli; five commissioned research reviews and anaiyses; six program papers; and edited transcripts of discussions foilowing each paper. The research reviews and anaiyses inciude: "Suppiy and Demand for Science and Mathematics Teachers for Science and Technoiogy Literacy: The Army as a Case Study" (Wilson Talley); "Research in Science Education (Wayne welch); "Taking Mathematic ce Teaching Seriousiy : Refiections on a Teacher Shortage" (Jeremy Kilpatrick James wilson) ; and "Preparation of Teachers: Myths and Realities" (Anne Flowers). The program papers inciude: The Teacher Shortage in Mathematics and Science: The Los Angeles story" (Rosaiyn Heyman); "PRISM=A Program for Students Built upon Professional Growth Experience for Teachers" (Douglas Seager); "Teacher Shortage in Science and Mathematics; What is Houston Doing about it?" (Patricia Shell); "Argonne Supports Precollege zducation in Science and Mathematics" (Juañita Bronaugh); "Science Museums and Science Education" (Bonnie vandorn); and "policy Alternatives: Education for Economic Growth" (Roy Forbes). The concluding section discusses possible research and practice directions. (JN)

This focumoent has wen reproduced as coivad frain the perso or aduced as originating it.
Minot change have buer. rèprōduction z. ality.

- Points of view or opintors siatēouir this docu ment don ínecessarly represénî̀ áfictal Nie postion of $\mu \cdot \gamma$

Proceedings of a Conference Sponsored by the Nationāl Institüte of Education,
in Washington, D.C.,
February 10-11, 1983

Edited By
John L. Taylor
National Institute of Education

January 1984
δ

This pubilction wis propared with funding from the National Institute of Education, U.S. Department of Education, under contrect no. NIE-D-83-0002. The opintons expressed in this publication do not necessarly reflect the positions or policies of NIE or ED.

U.S. Department of Education
The Honorable T. H. Bell, Secretary
Office of Educational Research and Improvement
Dr. Donald Senese, Assistant Secretary
National institute of Education
Dr. Manuel J. Justiz, Director
Dr. Shirley A. Jackson, Associate Director
Teaching \& Learning Program
Dr. Virginia R. Köhler, Assistant Director
Teaching \& Instruction División
Improvement of Sclence and Mathematics Team
Dr. John L: Taylor; Team Leader
Dr. Edward J. Fuentes
Dr. Gloria Gilmer
Dr. René C. Gonzalez
Dr. Carol Jay Stratoudakis

a

National Institute of Education
Teaching and Instruction Division
Mail Stop 5
1200 19th Street, N.W.
Wäshington, D.C. 20208
(202) 254-5407

Contractor: Dingle Associates; Inc.; Wāshington; D.C.

FOREWORD

A shortāē of certified and qualified science and mathematics teachers is one of the most visible and critical problems fased by our Nation's schools. Local, State, and Federal governments; education and science associations; universities; the military; and private industry have all turned their attention toward this probiem. Colfectively, these bodies fory a nationai movement with the common goal of ensuring the Nation's role as a worid leader in education, science, engineering, and technology. The approaches taken to reach this goal; however, are as varied as the movement's participants. Hence, there is a need to identify and describe the most viabie aiternative and to focus the effort. The Improvement of science and Mathematics Education (ISME) Team of the National Institute of Education (NIE) was established to fill this need.

The ISME Team is charged with planning and overseeing reasearch on the science and mathematics teacher shortage. The team's specific aims are: (1) to determine and report on the state of the problem, its related issues and solutions; (2) to conduct a national conference on the science and mathematics teacher shortage; and (3) to preparè a research agenda on methods of allevtating the shortage. A unique aspect of the team's work is its emphasis on teachers and the nature of teaching in science and mathematics.

One of the team's primary tāks has been completed. A conference èntitled, "Teacher Shortage in Science and Mathematics: Mythé, Rēalitiē and Research," wās held iñ the Nation's captual iñ February 1983. The conference was designed specificaily to identify the sallent elements of the national science and mathematics teacher shortage, add corollany data to the existing body of knowlejge, and influence and guide füture NIE research in the area: The conference participants represented people working on ail facets of the teacher shortage.

The distinguished contributors to the conference proceedings, agreeing that teachers and téaching of science and mathemaftes is in a state of crisis; appifed their individual añd collective knowledge and insights to the problems of our daỳ. They focused on possíbie myths surrounding the teacher shortage; the realities and research concerning science and mathematices education, and the programatic soluttions operated within and outside of school settings.

The conference priceedings include a welcoming Address by Manuel J, Justiz; NIE Director; a Reynote Address by the Honorable T. H. Bell; United States Secretary of Education; followed by five comissioned research reviews and anaiyses; six program papera; and the edited transcripts of the discussions that foilowed each paper. The concluding section provides possible research and practice directions prepared as part of the conference sumary document.

A point of information. In the proceedings there may exist some discrepancies between the conference papers and the discussion of the papers. The discusaions depict responses to the conference presentations and earifer drāfts of the papers: The paper authors were encouraged and did make substantive revisions of thér papers after the conference for chis publication.

Educators at all levels; researchers; iegisiators individuals from business and industry; and others will appreciate the conference contributors' analyses, historical reflections, fesearch and curicula reviews; statistics;

We express appreciztion to Lee Shuiman; who served as moderator of the conference responsible for the winteilectual giue that connected prisentations and discussions to the primary themes of the conference. we allo thank Thomas Good and Gail Hinkel for producing an outstanding sumary document two months after the conference, over 1,000 coples of the sumary document bave been diştributed worldwide and to 50 Statēs. Appreciation is also extended to the conference contributors for their professional time and permission to print a stimulating collection of papers and discussions. Finally; we are grateful to the NIE staff; in partfcular Virginia Roehzer; and to Caroline Watler and Ramsey Sa'di of Dingle Associatea; Inc: for their excellent contributions to the conference and proceedings.

Shirley A. Jackson Associate Director

Team Leader
Improvement óf Science añ Mathematics Education

CONTENTS

r Page
FOREWORD 1
PLENARY SESSION 1
Welcoming Address '1
Manuel J. Justiz
Keynote Address 3
T. H. Bell
Conference Orientation 9
Lee Shulman
d
SESSION II - SCIENCE AND MATHEMATICS:
SUPPEY AND DEMAND DATA 13
Supply and Demand for Science and Mathematics Teachers 13
Betty M. Vetter
Discussion 37
Nationai Needés fō Science and Technoiogy íteracy:
The Army à à case Study 41
Wilson K. Tailey
Discussion 54
SESSION III = SCIENCE EDUCATION 61
Rēeāarch in Science Education:
Reviēw and Recommendations 61
Wayne Weich
Discussion 93
SESŚION IV $=$ MATHEMATICS EDUCATION 105
Taking Mäthematics Teaching Seriousiy: Reflections on a Teācher Shortāge 105
Jeremy Kilpatrick and James W. Wilson
Discussion 129
SESSION V - TEACHER EDUCATION: CURRENT CONDITIONS 147
Preparation of Teachers: Myths and Realities 14;
Anne Flowers
Discussion 172
Page
SESSION $\dot{V} I,=$ SCHOOL SYSTEM RESPONSE TO THE PROBLEM OF TEACHER SHORTAGE IN SCIENCE AND MATHEMATICS 189
The Teacher Shortage in Mathematics and Science: The Los Angeles Story 189
Rosalyn Heyman
PRIS2M - A Program for Students Buile upon Professional Growth Experiences of Teachers 197
Douglas Seager
Teacher Shortage in Science and Mathematics:
What is Houston Doing about it? 206
Pāticiā M. Shell
Discussion 212
SESSION Víi = PŪBLIC AÑ PRIVATE SECTOR RESPONSE TO THE PROBLEM OF TEACHER SHORTAGE IN SCIENCE AND MATHEMATICS 215
Argonne Supports Precollege Education in Science and Mathematics $21 \overline{5}$
Juanita Bronaugh
Science Museums and Science Education 221
Bonníe VanDorn
Policy Altērantives: Education for Economic Growth 231
Roy Forbes
Discussion 245
CLOSING SESSION253
Thomas L. Good
Steve DavisRobert StakeNama Sabar
SUMMA $\bar{R} \bar{Y}$ AND DIRECTIONS FOR ACTION 265
Thomās L. Good and Gail M. Hinkei
281
CONFERENCE CONTRIBUTORS

PLENARY SESSION

WELCOMING ADDRESS

Manuel J. Justiz; Director
National Institute of Education

 of Education's conference on the status of science and mathematics education. I have had the opportundty to meet a number of you who will be presenting papers and leading some of the discussions: I am very impressed with the, caliber of all participants and with the many different views and perspectives that are represented. We are delighted to have you jonn us iñ this forum; where we hope to continue a vigorous discussion iñ an area of tremendous interest and concern to all of us in this country.

I have just returned from a hearing in Albuquerque, New Mexico; held"by the Senate Budget Comittee; on the issue of mathematics and science. And 1
 representatives of industry and by the education communty are very much in tune with our concerns àbout the tremendous need for getting qualified mathematics and sciencé teachers in our classrooms as quickiy as possible.

Cleāily, mathematics and science are critical to our country's future and to its technology and economic prosperity. Technology is changing the structure of the world. Our abilifty to maintain a strong and sound economy and to compete effectiveiy tn the world marketplace will depend largely on our ability to maintain the technological supremacy we hāve had in past decades.

When we talk about mathematics and science, and when we talk about technoiogy, we also very quickly begin to think of the defense area and the critical roie that this country playe in providing for the protection of our ailics and other nations thà share our views and values. It is clear to us that if we do not keep up, both in industry and in the ciassroom, it will be; as Nobel Prizè winner Gleñ Seaborg has noted; "untlateral disarmament."

In the past; we have tended to look on science and mathematics as academic disciplines: This we must continue to do. But we cannot confine ourselves to this narrow view. The roles of science; mathematics, and technology have expanded, and they are now fundamental to enabling all of our citizens to meet the needs of our information-based, technology-oriented worid. It is apparent that we are entering a very vital and major technological revolutionan era in which the microcomputer may well become to American homes and familles what the pocket calculator became in the $1960{ }^{\circ} \mathrm{s}$. It ie essentiā that we become literate and informed about technology.

To respond to this demand, we wili need to overcome the inertia of 111-prepared students, inadequate laboratory facilitiē and materiais, and the scarcity of qualified science and mathematics teachers.

Consequentiy, it is imperative that we marshall the tremendous resources of this country to the task of gearing our Nation's schools toward exceilence in science and mathematics education. This wifi invoive inciuding our schools; colleges; libraries; museums; militacy, universities; business; and industry, in the deliberations ōn how to ciose the gap between our téchnologically sophisticated world and the present capacity of our education sȳtem.
\bar{a}_{2}
As befits the current state of knowledge in this area and the appropriate role for Federal Research and Development; our approach in this conference is not to try to arrive at a solution- Rather; it is to find key people; such as yourselves, both presenters and participants; to join us in investigitins the problew and considering a mational baseifne of knowledge on the isaues. Following this conference; the National Institute of Education ataff wll examine the proceedings in order to determine the implicatious for our future roie and for the research agenda that may well be further clarified and refined as a result of the proceedings:

I respectfully challenge you to articulate cieariy what you-wow-the perspectives that you bring to us-concerning the mathematics and science teacher shortage. Heip us to clarify the myths and the realities we are confronting and suggest promising research directions.

I trust this will be a productive conference. fill of us are looking forward to reading the proceedings; just as we are looking forward to the discussions that will take place today and tomorrow.

KEYNOTE ADDRESS

The Honorable T.H. Bell
Secretary, U.S. Department of Education

As you meet to discuss the shortage of mathematics and science teachers, it is important for you to consider not only the problems we face today, but those we will be facing over the next 3 to 6 years. To put this in perspective; I would like to emphasize three points:

1. All across the Nation, school boarde are increasing high school graduation requirements in mathematics and science. Keep in mind that for ēach additional year of study requiréd in éther of these fields; there wili be a nationwide demand for 34,000 additional high school teachers.
2. Teachers are leaving the teaching profession for : better paying jobs in the emerging high tech induàtries. Therefore, we must not only increase the supply of teachers; we must also make teaching more attractive tá eñare fewer téacher "dropouts:"
3. To date, we have not. fuily grasped the significance of the microcomputer as a force that will change our entire teaching and learning methods from kindergarten to graduate school. Computers are no longè the fad they were bāck in the 1960 ' \bar{s}. John Nāis̄bitt, in Megatrende, reminds us that fads are imposed from the top down and trends come from the bottom up.

It is up to those of us in education to help equip the yauth of our Nation with skills, knowledge, and vāuē so that they can weet their duties and respunsibilities to thé past and future of this Nationg Among other things. we have a rē poñibility as educators tō heip America remain the technological leảder of the world As President Reagan observed in hic State of the Union address; "We must keep that édge, and to do so we need to begin renewing the basics; starting with our educational system." Máthenatics and science education are an important part of pasí reasons thāt America rose to internationai greatness and are extrēely important for the continuation and s $\bar{r} \bar{n} e w a l$ of American life and the attainment of the American dream.

Some groups say there is no shortage of mathematics and science education or of teachers to provide that education: others say the deficits in both areas are enormous: obviousiy, we need to consider what the need will be when we change our emphasis. We must respond to the need for more technical and scientific competence and more scientific and computer literacy. Regardless of what the specific /figures appear to say; it seems inevitable that the future of white coliar workers; including teachers, wil be very strong it takes time to increase the supply of new teachers and retrain existing ones.

Now in do not mean this as an adversa reflection on our championship Redskin football team-of whom we Washingtonians are very proud-but the fact is that in mot of dur American elementary and secondary schoois a footbail hero has more respect than a sholar: Pep railies receive more attention and are far better attended than a debate meet or any other type of academic competition: We have stressed exceilence and competition in athletics but - seem to have forgot

Education has misplaced its priorities. Mathematiciand sctence education āe indicative of this: For example; a 1980 survey showed that ouly unne
 'one State requiré 3 years. othē data showed that only 38 percent of higk schooi seńors reported taking 2-1/2 or more years of mathematice and neirly 5 percent reported taking no mathematics àt all. only one-fourth reported taking 2-1/2 years or more of science; while 8 percent had taken no science coursé.
H.G. Wells has often been quoted for his observation that history in the 20th century has become a race between education and catastrophe. That . observation has never been more true. It seems that we often forget that our chilldren will spend most of their lives in the $218 t$ century; a cestury of bewildering scientific and technological change. We do not have time, to worfy about future shock when we are trying to cope as a peopie with the present shock and dislocation caused by a society fa transition from an indústial economy to a"high tech, information-gervice economy the revolution in information is as profoundiy changing society ā did the invention of the printing press or the industrial Fevolution centuries ago. This revolution wili make ali of us managers of information. It will free us to bulid and zum machines and to pursue better lives in so many other ways.o. if we are prepared to do 80.

High school graduates not proficient in the basic skills will narrow the pool from winch future engineers and solentista will bé drawn. Furthermores those students who choose ōher career fields wil not have the preparation to deal with the technology-based isaues they will face as workers and citizens in a Nation whose futuré is innked to technology advances. We are already seeing signs of this with the teŕribiy high percentage of unemployed teenagers. and young adults. In the past; students were not made avare thát science was important to them personaily: The general population of the United states did not understand the importance of \bar{a} firin grounding in mathematics; science, and the basic academic skills.

A point thāt no American can afford to miss ts that world leadership depends on technological superiority: As the late Premier Brezhnev stated: "The field of scientific and technological progress is today one of the major fronts in the historical battle between the two eystens" (Socialism and capitalism) :

At the end of World War II, the Japanese recognized and made a comitment to the teaching of mathematics and science and to technological developmentThey have met this comitment with high academic requirements and atandards.

chemistry: Less than 20 percent óf U.S. high school graduates tāke éven 1 year of physics, and less than 40 percent take 1 year of chemistry. Ironically, much of japan's advance in mathematics and science hāes been bāed on curticulum materiais developed in the United States in the 1960's.

I want every United Stātē citizen to be aware that many other industrialized countriē are providing a more Intense; rigorous curricuium fōr their $\bar{s} t u d e n t s$. Thēy are getting the resuits they demand. ifear that studenta in these countries are working to gain the education that could allow the United States to sink to the status of a second-rate power. We musit respond to this massive chailenge posed by the other industrialized nations of the world.

The strength of our economic $\bar{s} \mathrm{~g}^{\prime} \overline{\mathrm{s}} \mathrm{tem}$ and the defense of our country are pred́ćcated on our dominance in education and technology. To maintain our \bar{B} trength in these $\bar{a} \overline{\text { reasea }}$, and indeed, our national independence; we cannot afford to let skills in these fields degenerate. As philosopher Alfred North Whitehead once wrote: "It is. the business of the future to be dangerous; and it is among the merits of science that it equips the future for its duties."

Whà we alj know is that in ōrder to have quality education, we must have quajilty teaching: I feei that in ail subjects of academe, we are not attracting the desired large numbers of bright and talented people into the teaching profession: Most of the other professions and many of the skilled trades pay more than teaching. This has been a problem for years; and I will not beilabor the point because I ail sure it is one of which you are ail aware. I do not beifeve that anyone could dispute the fact that there ought to be more economic potential in the teaching profession: We desperately need to establish the teaching profession as a prestigious; esteemed, and honorable calling. Promising students and talented teachers already in the profession should be able to move readily through recognition and promotions to command salàry and ēstéém.

On our college and university campuses; we have established a system of academic rank; and it is universally accepted. In academe, we have found it both necessary and destrable to go even beyond this point. We have endowed chairs and distinguished professorships on many campuses. Compare this with the existing system in our elementary and secondary schoois. We have a single salary schedule with no salary differential except for years of experience and college credit hours. We have no bystem in our personnel practices thāt offers encouragement and opportunity to be recognized-as an outstanding professional worthy of distinction in both salary and esteem. We offer iitile incentive to those who enjoy the life of teaching and who have no desire to seek an administrative position.

I belleve we need to establish in American society a new position of "Master Teacher:" This new position ohould be a much esteemed and sought after distinction among teachers. It should provide a step beyond the ranks of beginning teachèr and ragular teacher, and it should command a salary thàt is commensisate with other salaries that recognize accomplishment and great worth to American society.

We cannot continue with the status quo and build à truiy great feaching professioñ. The time is long past dwe for a change:

There is nothing we do in America that is more important than reaching. $\overline{A B}$ we look to the future and the competition we will be facing in a changing and fiércely competitive world, we simply must realize that our youth deserve to be taught by the very best minde we can attract to our schools. In the years ahead; our State legislaturem; governors; school boards; administrators; and teacher organizations must take steps to build a truly great teaching profession: There must appear in the law; in the school finance formulas, and in the school board policies across the Nation new provisions that wili help us to attract and keep the very best talent available.

It is my hope that what I have been saying about the Master teacher concept would at least trigger more pubilc debate on what we should do to build a teaching profession to meet the needs of an increasingly complex society. We must make it posible for our most distinguished teachers to command a salary that is competitive with salaries in engineering; iaw; accounting; and other professions. This will require a big increase in à Master Teacher increment.

Let us now think about and speculate on the enormous impact that the microcomputer and silicon chip will have on all of American education. This is, of course, directiy relevant to what we have been discussing concerning : the supply of teachers. Consider the following facts. A few years ago, a. pocket calculator cost the equivalent of a trip to callfornia. Today, you can get one free with your subscription to a magazine. Given the frantic rate of advance in the computer industry, it is highly probable that, in 2 or 3 more years; we will have teaching computers the size of a billfold that sell for \$9.95. It wili be possibla to carry around an elementary blology; physics; or chemistry teaching computer that will tutor in the requirements of that subject. Students will buy. these computers and use then as casually as they now use pocket calculators: Theae pocket-aized teaching computers.will contain wuch of the coursework and baicic information now found in our textbooks. What is more; these pocket tasehing computers will have very sophisticated programing that will provide interaction and conversation with the learner.

If you do not believe this to be possibie, let ma tell you that a prototype was developed by the National phyacal Laboratory in England few years ago. The teaching computer was called "MiNNIE." It has more key functions than one seess on pocket calculator, and it has considerable interactive and tutorial capacity in the teaching of French to English-language-dominant persons and English to French-language-dominant persone

This era is just around the corner. Competing corporations are going to be producing these pocket-sized teaching computers by the millions. These little uitits will be very handy to uae, and they will be mass produced at à nominal a cost that competing companies are going to rush into the market very soon- This could radically change the scope and sequence of American educátion.

Now 1s the time for teachers and administratorin in education to face up to the fact thàt thè computē manufacturing companies are going tóo "címb into our sandbox" and start punching us around: Some mathematics teachers are now frustrated with the pocket calculator. The biology teacher, along with the physics and chemistry teachers; shraid be prepared for students who will come to school with much of the subject matter available in the memory of a pocket= sized teaching computer:

We need to recognize thís future potential as à near cētāinty. We need to reaíze that the pocket teaching calculator will be upon us in a very short time, and that it is going to rock the foundations of academe. We must grasp the immensity of the computer in education. It is going to lead us to bookless schools; to paperlēè newspapers. Interactive and tutorial computer programe will teà up the scope and sequence of education as we know it today and rē̄ape it in a manner that may be traumatic to many teachers.

The momentum wili be carried by the intense competition of texas Instruments; Atart; TRS-80; Apple, iBM, and all the rest that are frantically competing for this expanding market: Reep in find that we spend over $\$ 200$ biliton in this country on our public and private education éstăblishments: Thís $\overline{1} \bar{s}$ a market that has the computer companies licking their chops. Parents wili spend bifíions more in addition to taxes and tuition to give their children the demonstrative educational advantages that will be promised on télevision and in full page advertisemente in nationwide magazines.

Now this is cruciā to our discussion about mathematics and science teacherē because the level of preparation and the subject matter mastery of tomorrow's teachers will demand effective teacher preparation on the. university campus.

I did not sketch the computer and the future of education with an intent to tell you that it will be bad for education. I emphasized that it wili be what American education will make it-only if we seize the opportunities and shape the events to our advantage. "If we do not have both the foresight and insight to grasp the significance of the technological future, we will be left on the sidelines, and the computer companies, with their omipresent software, will dominate.

This is an excting as weil as frustrating time to be involved in education: I commend our National Institute of Education for sponsoring this conference. We appreciate your participation in it. "May you have a rich and rewarding experience.

I look forward to your report and deliberation fin helping to sort out the mythe and realities posed by the educational chailenges of the information and high tech age.

CONFERENCE ORIENTATION

Lèe Shulmañ, Profēssor of Education and Psychology Stānford University

My fēw remarks fali under the category of "orientation;" but i suspect this group needs very ifttie orientation to what it is we are going to be discussing over the next 2 days.

Many of us feit that the late $1950^{\circ} \bar{s}$ and the $1960^{\circ} \bar{s}$ was a period of renaissance for science and mathematics education in this countryma period when the ferment and the excitement over reconceptializing the mathematics and science curriculums; and the social stūiē and behaviorai science curriculums in schools reached \bar{a} pitch that it had never before achieved and has not achieved since. During this period; many of us read an essay by Jerome Bruner called "The Act of Discovery." In it ; Bruner toid of the observation made by a British philosopher that there were basicaily three kinds of things in this world--you wili notice they come in threes; inevitably.

- First, there are troubles=troubles that breed feeings of disequilibrium; of unease, and of discomfort; leaving us with a sense that there is $\bar{s} o m e t h i n g$ wrong that ought to be responded to; but little elsé
- Then, there are puzzles-and puzzies have a very clear structure; a very precise formulation; a very elegant design.
- And finaliy; there are problems. And problems are what we have when we find an appropriate puzzle to lay on one of our troubles.

What we are here for in these 2 days is not merely to acknowiedge that, as Robert Preston sang so persuasively in "The Music Mang we ve got troubles" in this country in the area of science and mathematics education: That will Yield simply breasi-beating and thetoric. Rather, we are here to find appropriate ways of transforming those troubles into problems-oproblems that we can then address intelligently through poifcy, through inquiry, and one would hope; through policies grounded in appropriate research and inquiry our goal is to help move our national agenda from soul-searching and anguish to carefūlly crafted poifcies int research.

The roie of research in this kind of activity is to inform practice and policy; to provide a basis for evaluating policies once they are put in piace, and-I think this is terribly important-to be informed by practice. As you look around this room; you find people not only from the research community but from the comnunities of business, industry; pubilc and private educātion at all levels; and the military opeople. In the varieties of practices that we need to listen to and taik with in order to produce a body of research in this country that will both inform practice and learn from it.

The focus of our meeting is the profession of teaching, especiailywith reference to science and mathematics, the conditions of that profession, and the education of teachers. I sāy this because the planners of this conference did not try to include in this 2-day agenda every possible topic relevant to the problems of science and mathematics éducation: for example, for the last decade there has been a rich and exciting body of work under way in the cognitive paychology of learning in science and mathematics. Although this is a very important body of work that; at some point in the near future; must be integrated with the deliberations of this conference; it will not be addressed explicitly during these 2 daȳg. An important body of work is aiso developing on the uses of technology instruction and In teacher education. That; too; will not be addressed explicitly in the next two days.

We have learned from our experience in research that the only way to make real progress on a question is to delimit it, or set some boundaries on it. This may dissatisfy those who want to do everythiag at once; but without deliniting the problem, you cannot have sufficient precision of deliberation and debate, dialogue; and investigation to move ahead.

I think you have to recall that the meaning of the word "discipline" is itself an interesting pun. It means not only a delimited body of inquiry, but also reflects the discipline of the investigator who forces himseif or herself to work within the procedural rules of a fieid and to not try to do everything at the same time. Clifford Gertz put it very $\overline{\text { nicein }}$ when he said: "You don't have to know everything to understand something." our goal today and tomorrow is to come to understand some very important things.

The dilemas that Secretary Bell described can sometimes best be appreciated by a particular individual case. Lét me teil you of such à case. Last sumer, I had à converaation with a young woman who was. beginaing a 12-month program at Stanford Doiversity leading to certification as a science teacher. She has a bacheior's degree in plysics; with distinction; from UCLA aud had worked for a year in the aerospace industry in southern callforaia. She had come to Stanford to study to be teacher. One of the things the Stanford faculty does $\overline{\text { as }}$ part of student ortentation to teaching is to pass out the salary schedule of the Palo Alto publice-schools. Student teachers deserve \bar{a} gense of what to look forward to when they finish their program. This young woman looked at the salary schedule and said: "You know, if I can get 90 graduate hours and work for 12 years, I can end up earaing as much as I made iabt yeari." And she just smiled and shrugged: She is stili in the program.

This young woman's attitude tes one of the thinge we have to come to understand. What are the sources of gratification? What are the motivations that bring. talented young people into our profession? What are the conditions that we need to foster to bring mori peopie in? What are the conditions we have to create in the field to ensure that young women and men will still be teaching not only 2 or 3 years from now; but 10 or 15 ? These are the kinds of questions that we are to address.

We begin with two papers that examine questions of supply and demandquestions of manpower. Now, you might say: why in the worid; when we have theee very serious policy questions to deliberate; shcuid we begin by merely deacribing what the situation 1"?"

I am reminded of a ietter to the edítor in Science magazine about 10 years ago from a British operations researcher named C.D. Waddington, who is considered in Great Britain; ì am told; to be the father of operations research in that country. In his létter; Waddington was describing what operations research was like during World War II; when, in effect; they had to invent ít as they went along. Waddington stated: "You know; too much emphasis has been placed on the fancy equations. we had to generate in order to do our work. It is important to remind everyone that perhaps the most important thing we learned was the importance of first describing carefuliy and with great precision what the current gtate of affairs was whenever we addrēsed a nēw problem. We of ten found that when we had carefully described what was currently the state of affairs; we didn't need complex solution strategies; it was perfectiy ciear what we ought to do next. And cei :ainly, even when we did need complex strategles; we couldn't proceed without knowing wize the current state of affairs held."

Foilowing the advice of Mr. Waddington, we will begin with a careful consideration of what the current state is with respect to the availability and likely availability of tēachers of science and mathematics-

SESSION II SCIENCE AND MATHEMATICS: SUPPLY AND DEMAND DATA

9
SUPPLY AND DEMAND FOR SCIENCE AND MATHEMATICS TEACHERS
Betty M. Vetter; Executive Director Scientific Manpower Commission

There is abundant evidence of a shortage of qualified matiematics and science teachers in the secondary schools, and some evidence of a dininishing quality as well. A potential shortage of scientists in some specialties; as well as of engineers and technicians; will be exacerbated by a decline in prēcollegè mathematics and science education: President Reagan recently described the problem as "serious enough to compromise America's future ability to develop and advance our traditional industrial base...." (Reagan, 1982).

This paper examines the evidence pertaining to the shortage of quaifíd sctence and mathematics teachers and to a drop in quality discusses some of the reasons why the shortage has occurred, the accompanying indicators of change in student achievement, and the consequences of a continuation in this shortage; and summarizes some of the steps being taken to alleviate the problem. Comparisons are made with the educational processes in other nations with whom the United States is in competition, both in defense and trade.

EVIDENCE OF SHORTAGE OF SCIENCE AND MATHEMATICS TEACHERS

Surveys

In the fail of 1980 and agañ in the fall of 1981, the 50 State actence supervisors were asked to assess supply and demand for secondary teachers of science and mathematics (Howe añ Gerlovich, 1982): Survey resuits indicated that shortages reported for 1980-81 had worsened by 1981-82.

For 1980-81; 43 of the 50 supervisors reported a shortage or critical shortage of physics teachers; 35 reported similarly for mathematics teachers and chemistry teachers. The supervisors reported 447 vacancies for chemtstry teachers: These budgeted poitions were unfilled because no qualified candidates were avallable. However, evidence suggests that this survey probabiy underestimated the shortage -ince positions filled by unqualified candidates usually were not reported as vacancles:

For 1981-82; a physics teacher shortage had become critical 1n:27 Statea. For mathematics; 43 aupervisors reported either a shortage or critical shortage; and the number reporting shortages of chemistry teachers climbed to 38. Only elght States reported having an adequate supply of chemistry teachers; with two more reporting a $\bar{s} 11 \bar{g} h t$ surplus and three reporting a surplus.

A 1982 survey of placement directors; as shown in Figure, 1; as indicated on \bar{a} acale of 0 to 5 , confirms that the shortage of mathematics and science teachers is critical and worsening:

Figure 1
Demand for Science/Mathematics Teachers

In Decemher 1981, the Nationai Science Teachers Association (NSTA) surveyed 600 colleges and univeraities wh th teacher training programs. NSTA reported a 77 percent decline froil 1971 to 1980 in the number of mathenatics teachers, and a 65 percent decline in the number of science teachers prepared to-teach-in secondaity schools (See Table 1):- Purther;-the study found that in addition to a severe decline in the supply of persons trained to teach science and mathematics; the fraction of those trained who were entering teaching had also declined. The combined effect was a 68 percent reduction in newly employed science feachers and an 80 percent reduction in neviy employed mathematícs teachers since 1971; as shown in Figure 3 (NSTA, 1982).

Table 1

*	1971197219731974197519761977197819791980									
Science										
Graduating	100	90	85	75	65	65	55	50	40	35
Teachers									$\stackrel{5}{5}$	
Percent Entering	59	58	58	55	56	59	56	52	54	54
Teaching Máthemátics										
Graduating	100	91	86	73	60	45	36	27	27	23
Teachers										
Pércent Entēring	63	68	64	65	62	61	63	59	60	55
Teaching										

Source: : NSTA; 1982:
The effect of these changes is shown even more forcefuly when the data are in grapic form (See Figure 3).

Figure 2
Student Teacher Supply Index Based ōn $197 \overline{1}$ Supply

Science
Student
Teacher Index

1971 Base

Source: NSTA; 1982.

Mathematics

Another NSTA survey of à random sample of 2,000 secondary school principais, aiso conducted in December 1981 and analyzed by James Shymansky of the University of Iowa, requested information on the qualifications of those science and mathematcs teachors who were being hired (kiein; 1982): The survey found that 50.2 percent of the newly employed teachers were not qualified to teach science or wathematics but were employed on an emergency basis" because no qualified teachers could be found (Sée Tabié 2).

The findings; when examined by census regions, show severe problems in States where high technology industriē require the best-trained science and mathematics personnel. For example; in the Pactfic States; "a whopping 84 percent of the science and mathematics teachers newly employed in 1981 were uniualified in those subjects. The eastern seaboard and the gulf coasts also show higher than average ievels of unqualified teachers.

Table 2
Pérentage of Newly Employed Unqualified Science/Mathematics Teachers

Census Region	1980-81	1981-82
Pacific States	75\%	$84 \overline{7}$
Mountain States	44	43
West North Central States	26	43
West South Centrai States	63	63
East North Central States	23	32
East South Central Stāēs	43	40
Northeastern Statēs	11	9
Middle Atlantic States	40	46
South Atlantic States	48	50
All Stâtes	45\%	50\%
Source: NSTA; 1982.		
The National Center for Education Statistics (NCES) conducted a survey of		
shortage of 600 teachers represented 2.4 percent of all employed teachers in		
the physical sciences (NCES; 1982a). In mathematics; the uhortfall of 900		
the proportional shortfail has climbed well above that figure since 1979. .		

Tabie 3

Employed Teachers and Teacher Shortages; Spring 1979

Field of Assignment	Employed Teachers		Shortages		As $\begin{gathered}\text { Shortages } \\ \text { Percentage }\end{gathered}$ of Employed Teachers
	Number	Percent of $\bar{a} 11$ Teachers	Number	Percent of all Shortages	
Total	2;552,000	100.0	1i,300	100.0	. 4
Preprimary	99,000	3.9	700	6.3	. 7
Primary and general elementa=y	899,000	35.2	2,600	23.3	-3
Art	57,000	2.2	100	. 8	-2
Babic skills and remedさà education	9,000	- 3	-	-7	-
Bilingual education	22,000	-9	400	3.7	1.9
Biology	30,000	1.2	100	. 9	. 3
Businege	45,000	1.8	200	1.8	$\cdot 4$
English language arts	188,000	7.4	200	2.2	-1
Forēign languages	53,000	2.1	100	1.1	-2
General science	76,900	3.0	200	2.1	-3
Health; physical education	158,000	6.2	100	1.2	-1
Home économics	36,000	1.4	600	5.3	1.4
Industrial arts	41,000	1.6	600	5.3	1.4
Mathematics	150,000	5.9	900	8.3	. 6
Music	87,000	- 3.4	200	1.4	. 2
Reading	73,000	2.9	300	2.8	. 4
Physical sciencees	25;000	1.0	600	5.5	2.4
Social sutudies/social sciences	143,000	5.6	100	. 8	
Special education	219,000	8.6	3,200	28.3	1.5
Vocational education	101,000	4.0	300	2.9	- 3
Other	39,100	1.5	100	1.1	. 3

Source: National Centér for Educationestatistica; 1982a.

Number of New Graduates

Nationwide; the number of new teachers graduated in the past decade has' dropped from 36 percent to 21 percent of all college graduates. This is not surprising since a teacher surplus has been apparent in the placement statistics for several years. But the drop in science and mathematics education majors has been even greater. The number of education graduates with a major in mathematics (now only 0.5 percent of ail education majors) dropped 64 percent; from 2,217 in 1971 tō 798 in 1981, while the number of science education graduates dropped $3 \overline{3}$ percent; from 891 in 1971 to 597 iñ

1981 (NCES; 1982b): This number includes biology teachers; chemistry teachers; physics teachers; earth science teachers; and general science teachers:

Finally, only 5 percent of $\overline{f 1}$ college bound señors in 1982 (2.2 percent of the males and 7.4 percent of the females) indicated plans to mar in a education (NCES, 1982c); and only 1.3 percent of all education majors graduatiug in 1981 had majored in science or mathematics education (NCES; 1982b) :

Thus; it is apparent that there is a severe and worsening shortage of science and mathematics teachers for secondary schools and that present enrollment trends do not offer hope that the situation will change over the next few years.

Shortages in the States

Sōé Stāes and even some cities report fā more difficuity iñ filling their science and mithematics teacher positions with quaiffied candidates than do others. No national data are available on a Statéby-state basis; but $\bar{s} \bar{e} \overline{v e r a l}$ States have made some surveys of their own:

In North carolina colleges and universities each year report to the Stāe Department of public instruction the number of completions in teacher éducation, and the superintendent of each school district reports a vacancy count by field. However; mathematics teacher positions filled by teachers not certified in mathematics are not considered to be openings.

An anaiysis of these reports over the past 20 years by Robert T. Williams of North Carolina State university indicates that the percentage of new mathematics teachers as a fraction of $\bar{a} 11$ new $\overline{\text { aecondary teachers has decilned }}$ steadily since 1967 (Williams; 1981): Further; the number of reported vacancies for mathematics teachers has been decilning since 1969; añ; in most years; the number of new mathematics teachers has exceeded the number of vacancies. However; the same analyais reveals that in none of the 20 years were more than 58 percent of the prior year's graduates actually teaching in the fail; and the proportion fell as low as 20 percent.

The result of the effort over the fears to fili every niansroom with someone, whether qualified to teach the subject or not, has repulted in a sitiation in which oniy $\overline{5} 5$ percent of Nocth Carolina's.4, 7 U0 nathematice teachers are certified in mathematics. Among the voncertified mathematics teachers, 21 percent taught a full load of wathematics ciagses, while others taught ony a partial load (See Table 4). Many of the noñértified mathematics teachers were certified in sociai studies; physical education; granmar, science; or business.

Table 4
Cērificātion Stātū of North Cārolina Măthematics Teachers

Also or interest are the teaching assignments for certified and noncertified mathematics teachers as shown in Table 5.

Tabie $\overline{5}$
Mathematics Teaching Assignments

;	\checkmark	```Teachers Certified In Mathematics```	Teachers Not Certified位 Mathematics
Junior High/Middere School	${ }^{\prime}$	1,759	1,796
High School General Mathematics		919.	800
AIgebra 1		1,410	93
High School Coliege-Prep		1,723	52
Remedial Mathematics		138	307

Source: Wilijams; 1981.
The Virginla State Council of Higher Education reports, based on a survey of the 141 school $\overline{\text { sys}}$ teachers āvailable to hire is not guffictent to meet current demand in particular fields." Alnost half of the divisions in the State said they had éxtreme difficulty finding wathematics teachers; more than one third had
problems finding teachers of earth science; and one fourth reported extreme diffícuity finding quainfié teachers for chemiéry and physics courses. Almost half of the earth science teachers in the State were uncertified in the fiéld, dépite a 6 -year=old regulation that all earth acience teachers be endorsed by the 1982-83 school year: Seven percent of the State's chemistry teachers did not meet the requirements for certification in that field.

The number of students graduating from the statés 33 stateabaproved college education programs féil 25 percent in the last 4 years; the number of student teachers in science and mathematics decreased threefold in science and fourfold in mathematics from 1971 to 1980; and only half of the student
 1982).

In New Hampshire only one 1982 college graduate in the State planned a career in mathematics teaching: In 1980; there were 4 ; openings for mathematics teachers in New Hampshire high schools; but only six graduates of teacher education programs throughout the state sought mathemática teacher (rertification ("Math Teachers Scarce," 1982).

Data fiom the National Council of Teachers of Mathematics Mathematics Shortage: Fact Shéé" iñ Séptember 1982 reveà the foliowing about some of the other states:
$\bar{\rho}$: Misaouri. Oniy about half of the 80 prospective wathematics teachers who were to graduate from M1ssouri's teaching institutions were expected to be teaching the foilowing fail; aithough at least 200 vacancies were expected in the State. The nurber of emergency certificates 1ssued in 1979 was up. 43: percent over 1978.

- New York Oniy 32 graduating eoliege seniors planqed to teach junior ō senior high mathematics in 1982.

California, Among more than 400,000 students in Callforniá ${ }^{\text {s }}$ public four-year institutions in the spring of 1982; only 97 were preparing to be secondary mathematics teachers.

Texas. In 1982; 20 graduates were certified for mathematics teaching; but only 7 entered the field.

- Maryland. A aurvey by the State Department of Education at the end of the 1979-80 school year estimated thet 50,000 secondary students received their mathemeics instruction from more than 400 teachers who were not certified to teach secondary pathematics.". In 1982; only 17 new mathemetcs teachers graduated in the State; and 8 entered teaching.
- Connecticut. The State iost 100 mathematics teachers in 1982 through retirement and job shifte, while only 28 mathematics teachers graduated from the 14 State institutions.
- New Jersey. The State Department of Education has declared an emergency shortage of mathematics teachers in 17 of New Jersey's 21 counties. This emergency designation permits districts to use unifcensed teachers--some without a bachelor's degree-to teach mathematics.
- Iowe. The number of graduates prepared to teach mathematics dropped from 234 in 1970 to 60 in 1979: The number of vacanciés during that period fluctuated between 200 and 250 each $\bar{y} \bar{a} a r$, with the smaller school
\boldsymbol{r} districte having the most severe shortages.
- Mississippi: According to the State Superintendent of Education, State institutions do not even come close to: providing the 400 to 500 mathematics teachers that are néedéd.

Teachér Exodus too Industry

Compounding the problem of an undersupply of new graduates in ocience and mathematica education is the serious exodus of experienced teachers to industry. According to an NSTA survey of science teachers, the average age of science/mathematicē tēachers $1 \bar{s} 41$, and the average number of years of experience is 16. However; aimost five times more science and mathematics teachers left teaching last year for employment in nonteaching jobs than left toi retire: If the present exodus of quaitfied secondary school science and. mathematics teachers continues at the 1980 and 1981 rate of 4 percent per year, there will be a net ioss of 35 percent by 1982 (NSTA, 198220. Another NSTA survey found that one in four teachers among the founger faculty plan to íeave teaching complétély (National Science Foundation-NSF-1982a b):

Further, a survey in North Carolina found that those planning to leave predominantiy are those who are best qualified, while those planning to continue à career in teaching are those least qualified on the basis of preparation and test scores (Williams, 1981). Although there is no documentation, it appears probable that those who have ieft teaching in the past few years also are among those best prepared in science and mathematics and therefore most desirable as employees for industry.

The reasomia for the teacher exodus to industry are generally so obvious as to need no explanation-higher salary levels, more opportunities for advancement; an environment conducive to accomplishment, adequate equipment, and; perhaps most important of all, more respect from soctety'.

A quick look at comparative starting salaries at the end of bachelor's degree indicates the value society has placed on teaching compared with other science, mathematics, and engineering activities. A starting teacher in 1982 averaged about $\$ 13,000$ à year. Mathematices wajors going to government or industry averaged $\$ 21,300$; computer scientists; about $\$ 25,000$; chemiatry majors, $\$ 21,000$; and engiñers; more than $\$ 25,000$ - Oniy biology majors; at $\$ 16,000$, came even ciose to the teacher salary levels.

QUALITTY OF NEW SCIENGE AND MATHEMATICS TEACHERS

The drop in the quantity of mathematics and science teachers appears to be accompanied by a drop in the quality of new graduates preparing for secondary teaching. Although quality is much harder to measure than quantity, some indicators of quality can be examined. One of the most obvious is the test scores of students plaming majors in education.

The College Board reports that among college-bound seniors in in82, the average score on the verbal portion of the Scholastic Aptitude Test (SAT) was 426 and that on the mathematical portion was 467. Among students indicating plans to major in education, the verbal scores averaged 394 and the math 419. Thus, as a group, students planing to teach are considerably below average in this measure of quality (Coilege Entrance Examination Board (CEEB), 1962-1982): The scores on the Graduate Record Eraminatiou and the National Teacher Examination àiso indicate thā studentes currentiy enroiled in teacher education programs are the leaget competent in comparison with those prepariṇ̆ for other profegeional careers:

Further, the least competent of the teacher education graduates appear to make up the buik of those who plain to remain in teaching. por example; a study of teacher recruitment, selection, and retention in North Carolina found \bar{a} dramatić difference in the teaching plans of those who were highest and ithose who were lowestinu ability: of those in the upper 20 percent of measured academic ability, oniy 26 percent intended to teach at age 30, contrasted with 60 percent of those with the lowest academic ability (CEEB; 1962-1982).

The National Center for Education Statistics confirms that the number and academic atanding of high school seniors planning to major in education were lower in 1980 than in 1972. Also; as shown in Table 6; the academic records of both women and men planning an education major were lower than those of their 1980 classmates who were planning to major in other fields (NCES; 1982c).

Based on an analysis of data collected In the 1980 High School and Beyond study and in the National Longitudinal Study of the High School Class of 1972, NCES examined cognitive test scores; questionuaires about backgrounds, high achool experiences, and the plans of these two groupa of students. Ten percent of the women college aspirants planned to major in education in 1980; down from 18.8 percent in 1972. Among the men, the segment planning eduation majors decinned from 6.0 percent in 1972 to 3.4 percent in i980.- About three times as many women as men plānned an education major; and white women made up about 67 percent of all studentes planing such à major. Whité malēs were second (19 percent), followed by black females (5 percent), Hispauic females (3 percent), and others.

Students planning to major in education had lower scores than other college aspirants on reading, vocabulary, and mathematics tests; their grade point averages were lower than those of students planning other majors, and the number of mathematics and science courses taken in high school was less $\overline{\text { for }} \overline{\text { education }} \overline{\text { majors }}$ than for others; as was the proportion of courses taken that were ta academic subjects. Although thèse différencēs in academic qualification are more pronounced among māē than among females; they apply in both cases.

Table 6
Mean Academic Preparation Measures of College Aspirants; by Sex and Intended Major: 1980

Academic Preparation Measure	Total		Male		Femaie	
	Education Major	Other Major	$\underset{\text { Major }}{\text { Education }}$	Other Major	Education Major	Other Major
Test Scores						
Reading	52.31	54.77	51.86	55.13	52.45	54.42
Vocabulary	51.69	54.55	51.75	55.20	51.70	53.91
Mat	51.54	55.02	51.79	56.58	51.46	53.51
Grade Point Average*	6.25	6.36	5.79	6.18	6.39	6.53
No. of Mathematice						
Courses	2.53	3.12	2.50	3:30	2.53	2.95
No. of Science Courses	. 62	. 94	. 74	1.09	. 59	. 78
Proportion in Academic			\%			
Program	. 55	. $6 \overline{6}$	-47	. 68	. 58	. 64

*Self reported; on a scale of 1 to 9.
Sourcé: National Centér for Educātion Statistics; 1982c:
The mathematices tésts used for the clase of 1972 and for the cilass of 1980 were different and cannot be cómpared. However, comparison of scores on : rēading and vocābulary tests reveal a drop across time (Sè Tābie 7). Reading and vocabulary levels may not be the best indicators of the quality of potential educators in sctence and mathematics, but it is hard to see how effective teaching in any subject can occur without the tēacher having thēe skilis.

Equally distressing is the proportion of all high school courses taken that were in academic subjects: Among males planning education majors; fess than half of all high school coursework was in academic subjects; and for fēmāēes, thè proportion was onily 58 percent.

Tāble 7
Mean Vocabulafy and Reading Test Scorest of College Aspirants by Sex and Intended Major, 1972 and 1980

Test	$\begin{gathered} \text { Intended } \\ \text { Major } \end{gathered}$;	$\begin{aligned} & \text { Maie } \\ & 1972 \end{aligned}$	$\begin{array}{r} \text { niors } \\ 1980 \end{array}$	$\begin{aligned} & \text { Pemale } \\ & 1972 \end{aligned}$	$\begin{array}{r} \text { Seniors } \\ 1980 \end{array}$
Reading	Education Other		10.59	9.69	11.88	9.99
			12.03	11.16	12.35	10.84
Vocabulaty	Education		6.50	6.20	8.05	6.59
	Other		8.19	7.43	8.49	7.31

©Scores are mean formula scores (i.e., number of correct answers adjusted for guessing). Maximum scores are 20 on reading and 15 on vocabuiazy.

Among women, the differences in academic qualifications between those planning to major in education and those entering other fields appears to bé widening Aithough this trend is not oberved among meng the preponderance of women within the total group makes the findigs aignificant as a tool for assessing the quailty of tomoriow's teachers.
 from other teachers; but as noted, teachers who are not qualified in mathematics and science, but have credentials in other areas of ducation; are teaching mathematics and science anyway: Thus; we must be concerned with these findings.

Sorae of the States aiso have examined the quality of education marse For example, Virginia reports that the students who enter its education programiz tend to have iower entranc test cores than those who enter other coliege programs (Mooré; 1982): Education mars at State universities scored añ average of 121 points lower on the combined mathematics/verbal. SAT than did their counterparts who graduated in other fields. At private colleges, education graduates scored 80 points below others at their schools.

CHANGES IN STUDENT ACHIEVEMENT

What information do we have on the effect of these teacher shortages and exchanges on student achievement? We cannot document the relationship, even as. to whether it is cause or effect; but we cañ examine changes in atudent achievement.

Test Scores

Since 1962, at the height of the post-Sputaik push for better U.S. mathematics and science training mathematics scores on the Scholastic Aptitude Testa have fālen steadily; as have the verbal scores (CEEB; 1962-1982). The

National Absessment of Educational Progress (NAEP), in āssēsements of mathematic skilis conducted in 1973 and 1978, found $\bar{a} \bar{s}$ harp drop in the ability of students; particularly 17 yeara old, to apply classroom theory to the numerical problems of everyday life. Information released by NAEP on February 8, 1983, showed a continuing deciine in 1980. In this same age $\overline{\mathbf{g}}$ roup, thèrè hās been à steady decline in the science achievement scores as measured 1ū national assessmente in 1969; 1973; and 1977 (NAEP; 1978; 1979). This decinne also continued in 1980.

Lowered scores have not been 11mited to the SAT and NAEP tēsting programg. Consistently lower annuai mean scores have been registered on the American Coliege Tests (ACT), the Comprehensive Tests of Basic Skills (CTBS), the lowa Tests of Educational Development (ITED), and the Minnesota Scholastic Aptitude тев

The decliñe iñ àverāge SAT scorē may have reached its nadir: The 1981 mean $\overline{\text { Bcores }} \overline{\text { we }}$ we the same as those for 1980, and the scores in 1982 actually increased silightly because of an fncrease tn the scores of Black students. In the 1982 tests; Black students' scores rose an average of 9 points on the verbal side and 4 points on mathematics; while whites gained 2 pointe in verbal and remained at the same level in mathematics (CEEB, 1962-1982).

Decilnes in test scores during the 1960's and 1970's have been attributed to a host of protiems in home, school, and society. The relationship between the quality of mathematics teachers and student mathematics scores is not quantifiable, but a declining score pattern might, in part, be a cause and, in part, an effect of a shortage of qualified science and mathematics teachers. In other words, \bar{a} vicious circle.

Some educators and noneducators have attributed this slide to the new math" programs introduced during the late 1960 ' s ; while other studies show that mathematic achievement is higher for students using the new curriculum than for those taught in the traditional way.

High School Graduation and College Entrance Requirements

Other indicators of student achievement aiso should be "noted. Since 1970, there has been a nationwide trend toward reduction in the number of courses in nathematics and science, as well as in such areas as forelgn languages, that are required for a high school dipioma. Oniy one-third of the Nation's 17,000 achool districts required more than one year of mathematics and sciencee for graduation in 1982, and one-half of aill high school graduātē tāke no mathematics or science àt all beyond the 10th grade (NSF, 1982a \& b).

Also, as à group, coileges and universitiēs hāve lower their requíremente for admission. This hās neces̄itated extensive increases in remedial courses in most institutions. Remedial mathematics enroliments àt 4 -year $\overline{\text { institutions increased }} 72$ pércēt between 1975 and 1980 , compared tō à 7 percent increase in total student enroliments for the same period. In pubilc 4-year collégē, 25 percent of the mathematices courses presenty being
 remedial (NSF, 1982a \& b).
\bar{A} recent study by the National Academy of Sciencē $\bar{s} 1 \bar{s} o$ document \bar{s} a decline in the number of science courses taken by college studentes who ance not specializing in science, eagineering, or sciencerelated professions: In 1980, the average nonspecialist college student devoted only 7 percent of coursework to science (NSF; 1982a \& b).

The proportion of high schooi students who have taken science and mathematics courses that would prepare them to enter and understand college
 prepared to major iñ a quantitative field includes less than one-third of all graduates and less than one-fourth of those who enter college.

Two studies by the Nationai Center for Education Statistics provide information on the science and mathematics preparation of high school seniors. One shows the proportion of all seniors in the spring of 1980 who had taken particulà mathematics and science courses (See Table 8):

Table 8
Percent of Seniors Who Took Courses, Spring 1980

Table 9

Average Semesters Taken by Seniors in Grades 10 to 12

Subje	$\begin{array}{rl} \text { A11 } \\ 1972 & 1980 \end{array}$		Men		Women	
			1972	1980	1972	1980
Mathematics	3.6	4.1	4.0	4.3	3.2	3.9
Science	3.4	3.4	3.7	3.6	3.1	3.2

However, the small increase in science coursè taken by women is accompanied by. a small decrease among men. Both sexes. have increased the number of semesters of mathematics taken during their high school years (Scientific Engineering Technical Manpower Comments; 1982a).

Cause or Effect?

If good teachers are leaving and only the poorer students are entering teaching, is this a refiection of the low āalariés paid to teachers, or are the iow salaries a reflection of the quallty of teachers and teaching as been by the taxpayers who must vote, directly or indirectly, on those salarles? is the inability to raise sālāriēs for teaching fields in short supply àtributable to union rules and seniority practices; or is it attributabie to citizens' perceptions of science and mathematics fieids as not important enough to be taught by'qualiffed teachers? How important is whe fact that able women intereated in mathematics and science are no longer relegated to teaching as the oniy acceptabie place for their talents?

Why have scores on the mathematics Sat decined so steadily for so long? Is it poor or uningpired teaching that has resulted in the cirinuation of the score decinne iong aftē the original shảkeouts of adding significant numbers of students who would not have planned to go to college in earlier years? or has the continuing decline lin tést scorē resulté in a lessening of quality àmong those who seek to entér teaching careers? Or are all of these factors intertwned as both causes and effects?

FEDERAL SUPPORT FOR SCIENCE/MATHEMATICS EDUCATION

Some thought fui educators believe that only national intervention can bring about solutions to the shortage of mathematice and science teachers. Others beifeve that education is à State and local responsibisity and that the Federai Government should not inteirfére. Many members of this same group beíleve that past Fedérā éffort̄ hā̄e beeñ useless; or at least ineffective.

The support of the National Science Foundation for such activities as sumer workshops for teachers and other inservice training disappeared several years ago; although the FY 1984 budget includes $\$ 5$ milion for such programs. For the pist 2 years; the administration has indicated that previous support
for science education was extensive but had not succeeded, and therefore it should be dropped. The facts are just the opposite. NSF support for science and engineering education has decifned steadily and steeply for the past 22 years; with science education's share of the NSF budget dropping from a high of 47 percent in 1959 to its present low of 2 percent as shown in Figure 4 -

Figure 3
NS \bar{F} Science Education Funding as à percent of Total NSF Budget

Source: Nationai Science Foundation.
The FY 1984 budget; however; included $\$ 39$ million for science education; with 51 percent targeted for precollege teacher improvement in science and mathematic activities: Further; $\$ 50 \mathrm{million}$ is to be provided to the States 1ñ matching grants for 1-year scholarships to retrain unempioyed graduates; teachers" in surpius fields; and retirees as science or mathematics teachers. This crash program aims to produce 7,000 more teachers per year.

NSF support for precoliegé sćénce education dropped sharply over a 20-year period, going from 72 percent of the Foundation's science education budget in 1959 to 22 percent in 1980. In 1982; NSF's entire science education division was eiiminated. As shown in Figure ${ }^{5}$; the deciine in NSF support for secondary school science and mathematics correlates quite directly with
decilaing achievement in science as measured by the National Assessment of Educational Progress, and that decline has continued both in budgets and test scores. While this does not necessarily imply a cause and effect relationship; when coupled with other evidence the relationship appears reasonable (Kiein; 1982). But especialiy worrisome is the decine among the high achtevers-those who. will provide most of the potential pool for science and engineering careers.

Figure 4
Declines in NSF Support of Precollege Science Education Correlated with Declines in Science Achievement at the Secondary Level

Source: National Science Foundation and Education Comission of the States.

CURRICUEUM DEVELOPMENT

Another íkéy reason for the decline iñ the quantity and quality of mathematics teachers is that curriculum development activities have been

criticism of the "new" curriculums produced with NSF aupport, a recent study findicates that they have been far more successful than mosit people realized (Anderson, 1982).

An anaiysis of 105 studies involving 45,000 students compared those errolled in new science curriculums and those in tradítional curículums. On every measure, including attitude, achievement, and process skills, atudente taking the new NSF curriculums scored 14 percent higher ovarall. Students in the BSCS Biology and Chem Study programs scored 17 percent higher then those in traditional programs: Perhaps most important is that students from low socioeconomic groups scored 24 percent higher using the new curriculuma, which gave minority children in those programb a decided edge over similar childyen exposed to traditional curriculuma.
 Few teachers \bar{a} re left in the schools now who are qualified to teach the new curriculums, and almost none have been given the important inservice training since NSF stopped support several years ago. The 1984 budget includes a $\$ 5$ IIllion program to support woikshops and other traintng activities for precoilege science and mathematics teachers: Further; these programs are in sertous need of medification and regision to take into account the developments of the past 20 yearis in such areas as computers; modern electronics; and technology applications: The 1984 budget does not include-funds for cüriciculum development.
\therefore Oniy if teachers find their subject interesting can they transmit that interest to theif students. Teachers who are themselves unskilled in their subject matter or who are using teaching materiala they do not understand or appreciàtè àre unifkely to inspire interest in the subject among theiry: ? students.

INTERNATIONAL COMPARISONS
One reason that our problems in mathematics and science education concern us is that we live in an international setting. We can never again regtrict our concerns to the confines of our own country: We have potential enemies and potential trade compétitors all over the world -

The decilning emphasis on science and mathematices in the U.S: school system is in marked contrast to the emphasis of other industrialized countries (NSF, 1982a \& b; Wirszup; 1981; Savage; 1981). Japan, Germany; and the Soviet Union all provide their citizens with rigorous training in science and mathematics. Comparative studies in science and engineering education suggest that students in these countries are getting the kind of education that may allow them to overtake the United Statea in scientific and technological advances with both indūtrial and milltary applications.

For example; almost 100 percent of Soviat students complexe secondary education, compared with 75 percent in the Uatited States. Compuisory ocience in the U.S.S.R.. inciudes 5 years.of physics and 4 of chemistry; fewer than 20 percent of U.S. high school graduates take i rear of physices, and oniy 37 percent take one year of chemistry. The U.S.S.R. offers its students
sequences of course material in science and mathematics starting with an intuitive level of understanding and progressing to empirical levels and, finally, to formai axiomatic and theoretical understandings. U.S. students entering these subjects are immediately introduced to abstractions, without the prior steps. For many students; these concepts seem hopelessiy difficuit; thus; the students fall or drop out, ot, on advice of others; simply avoid taking the courses because they belleve them to be difficuit.

Ail Soviet students study algebra; oniy half of the U.S. students do. Indeed, half of all U.S. high schooi graduates take no mathematics beyond the 10th grade. Calculus is taken by ail Soviet high school studenta but by only 3 percent of U.S. students. Seven States require no high school mathematics at all.

Neariy ail coilege-bound students in Japanese secondaŕy schools take three natural science courses and four mathematics courses during thetr 3 years of hígh school. While SAT scores wert dropijing ic the United States; the áchievement tést acorē of Japanese señors. Increased from 54 percent in 1964 to 71 percent in 1981=-a gann the Japanese attribute to modernization of the curriculum." By 1970, Japapese seventh graders ranked first in mathematics over students from 12 industriaízed countries; including the United States; and scored first among 19 nations in science tests iñ both the 10 and 14-year-old age groups: in an ongoing second international competition involving 23 countries; japan's current preliminary resūits show significantly increased scorés ovef those of Japainese students in 1970 in, both algebra and analysis; inciudíng calculus (News-upđate, Second International Mathematićs Study; 1982).
it \bar{t} s not surprising, then, that from 1963 to 1977 industrial productivity grew 19? percent in Japan, compared with a 39 percent growth in the United States. Japan dominates the auto and steel production indusiriē; hās almost eliminated competition in consumer électronics, is the industrial leader in robotics and optical electronics; and is rapidiy overtaking the United States: in semiconductors; computers; and even genetic engineering.

In West Germany, there is a standard curriculum for all students through gradè io, and the only variation is in specialized science-ortented schools where each subject is studied more intensively.

It is à reflection of these differences that, on a per capita basis for the rēlevant āge group, for every engineer graduated in the United States, the United Kingdom produces 1.1; West Germany; 1.4; Japan; 2.6 ; and the Soviet Union; 4.1.

PUBLIC SUPPORT EOR SCIENCE AND MATHEMATICS EDUCATION

The intertm report of the National Science Board s (NSB) Commission on Precoilege Education in Mathematics, Science and Technology notes that the public has not understood the importance of a firm grounding in acience and mathematics for all people in a modern technologicai society, although there is evidence that such understanding is increasing (NSB, 1982).

For example, the $97 t h$ Congress received strong support for bilis on this 1ssue, and science education will be the subject of major legisiative efforts of the 98th Congress. Adminiatration support is indicated by the FY 1984 budgets for science education. Beyond this, the Premidert has announced a $\$ 50$ mililion cash program to try to produce 3,000 new mathematics and science teachers per year by providing l-year scholarships to unemployed graduates, - teachers in surplus fields, and retirees, for retraining as science and mathematics teachérs. Provided in the form of block grants; the money is to be matcined by the States: Some educatora have expressed doubts that this retraining can be accompíshed in i year: Nonethelecs; this plan, alons with the facrease for scfence education in the NSF budget, demonstrates the political view that the pubilc wante improvement in science and mathematice teaching.

Some States have made serious strides in pushing improved mathematics and science education. Eighteen States have evacted legislacion to raise standards of ellgibility for teacher education, although this move has not generally been accompanted by incentives to attract better. students. Public fustitutions in eight western States have announced or imposed admisaion standard changes; or are discussing changes for the future; including tightening requirements to include more high school courses, especiaily in English and mathematics (Scientific. Engineering Technical Manpower Commenté, 1982b).

Pubifc opinion polis show that mathematica and science education rate high among items that taxpayers are willing to support with their tazes: Mathematics ranked at the top iñ Gallup survey of sinbjecte deemed essentlal" by the general public for high school studenta, with 97 percent of the respondents placing it in that category. Science $80 t 83$ percent, coming iñ fifth behtud Engilsh grammar and composition, civics and governent; and U.S. history (Scientific Engineering Technical Manpower Comments; 1982b).

CONSEQUENCES OF THE TEACHER SHORTAGE
The resulit of shortages of qualified acience and mathematics teachers already is being feit. Some schools have dropped mathematics courses; particularly advanced courses, for lack of qualifled teachers. Many schools no 1onser offer phyalcs. Almost all districts have had to use teachers not \bar{c} certified in these 'subjects, and the results have often been less than inspiring.

Present and projected shortages of students who are both qualified for and interested in careers in acience and engineering cannot be rectified unless a higher proportion of the diminishing high school population is given the necessary preparation in high school to enter these curriculums at the coilege level.

The need for technical personnei in the Armed Forces is well known This need encompasses the enifated personnel required to maintain and use ail kinds of technical equipment, as well as the engineers and scientists who deveiop and use sophisticated weaponry. A recent Department of the Ait Force report examining scientific and engineering shortfails (īis.; Scientific Advisory

Board, 1982) concludes: "Unless corrective action is taken, the USAF anticipates shortages of at least $10-15$ percent in military personnel with the most current scientific and engíneering requirements." Equaily important is the fact that some military equipment is standing idie because too few enifsted men have the bāckground in mathematics and acience to be trāaed in the use and maintenance of the equipment.

A national study conducted in 1980 shows that only 18 percent of the U.S. adult population-varying from 4 percent for persons with less than a high ${ }^{\text {* }}$ school diplomá to 55 percent of those with a graduate degreq-is interested in and informed about scientific matters: Oniy a smali percentage of Amertcans indicāted thāt they would take an active part in controversies invoiving science and technology, and only one in seven hā àminimai understanding of what it means to study something bcientificaily (NSF; 1982a \& b). This leads inevitabiy to an electorate that may support or protest difficult policy decisions on an emotional rather than an informed basis.

This is $\overline{\mathrm{n}} \mathrm{n} \bar{t}$ the first time that the United Stātēs hās fallen behind in some aspect of technological development, but the consequences of this present ilag, if no change is made, could be far more serious than in previous ¢ircumstances because of the rapidity of technological advancement.

There is no exaggeration in reporting that the science and mathematics teachē shortage and its consequences are $\bar{a} \bar{t} \bar{a}$ crisis level. Some movementē
 enough to take whatever steps wouid be required to provide an adequate supply of well-trained, Interested science and mathematics teachers and the equipment and supplíes necessary for them to do their jobs well. Most school districts are unwilling to raise tēacher sāā̄ies $\bar{a} \bar{a}$ they must be ralsed to attract and retain competent teachers, although most citizens fin those districts probably would recognizé thāt, in \bar{a} democracy; we tend to recognize worth by the salary lē̄el̄̄ we ēstāblish for particular activities. Despite unemployment rates now in double digits; we are not taking the necessary steps to provide the educational background at the precollege level that would allow and encourage many more of our citizens to become proficient in those skills for which jobs still go begging; even during periods. of high unemployment.

As we move to resolve the crisis, we might keep in mind a jesson from the Chinese. The calligraphy for their word meaning "crisis" consists of two words: "wei," meaning dangerous, and "chi," meaning opportune. Perhaps more \bar{e} emphasis on the opportunity that exisis in this crisis might help us to allēviate the dangèr.

REFERENCES

Akin; J.N. Teacher supply and demand: Arecent survey. 1980. Reported by Sarah E. Kiein, Testimony to the Commitee on Iabor and Human Resourceso of the Unitad Stateag Sangte, April 15; 1982.

Anderson, R., Symansky, J. ét ai- Preifminary resuits of "project NSF SED80-12310; February, i982. Reported by Sarah E. R1éiñ, Teatinony to the Comittee on Labor and Human Resources of the United Statēs Senate; April 15; 1982.

Coliēē Entrance Eramination Boarci Coliege bound seniors: (Anual seriga). New York: 1962-1982.

Howe; T.G.; \& Gerlovich; J.A. National study of the estimated supply and demand of secondary acience and mathematics teachers. Reported by Sarth E. Klein, Testimony to the Comittee on Iqhor sind Himan Resources of the Uaited States Senate; April 15; 1982.
 1981; 213; 412-416.

Klein, S.E. Tētimony to the Cominttee on Labor and Human Resources of the United Statēs Senate; April 15; 1982.

Math teachers scarce $;$ Focus; ${ }^{\circ} 1982$; $\mathbf{1}(4) ; 8$;
Moore; M. The trouble with teachers: Too few of them The Washington Post; January 21; 1982; Virginia Weekiy Section, 1; 7.

National Assessment of Educational Progress. Three national assessmenta of science: Changes In achtevement; 1969-77. Denver; Colo.: Education Commission of the States; 1978.

Nátionail Assessment of Educational progresso Changes in mathematicail achievement, 1973-78: Denver; Colo.: Education Comassion of the states; 1979.

National Centē fōr Education Śtatistics. Bulletiñ, Febriaiy 1982ā: Reported in Science Engineering, Technical Manpower Coments; 1982; 19(2);.5:

Nationai Center for Education Statisticse Earned dérees conferred, 1970-7i. and Earned degrees conferred; 198n-81: Unpublished manuscript; 1982b.

Nationā Center for Education Statistics. Education attracts fewer academicaliy high achieving young women. NCES Bulletin (NCES 82-249b); December 1982c.

National Center for Education Statistics. Digest of education etatistics. Washington, D.C.: 1982d.

National Council of Teachers of Mathematics. Mathematics teachex shortage: Fact sheet: September 1982.

6
P8

National Science Board Comission on Precoilege Education in Sciencé; Mathematics and Technology. Today's problems; tomorrow's crisese 1982.

Nạtionā Science Foundation. Science and engineering education: Data and
a information, 1982. Report to the National Science Board Comisision ou Precollege Education In Mathematics; Science and Technglogy; 1982a.

National Science Foundation. Press reiease (NSF PR82-31); 1982b.
National Sćence Teacher Association. Prēiminary results of a December 1981 NSTA survey of 600 colleges and universities with sctence and mathematics teaching programs. Reported by Sarah E. Klein, Testimony to the Committee on labor and Human Resources of the Untted States Senate; April 15; 1982.

News-update. Second International Mathematics Study, Spring 1982. Available from the U.S. Coordinating Comititee, Univerisity of Illiños at UrbanaChampaign.
Reagan, R-, President of the United States. Message sent to the National Academy of Sciences Convocation on Precollege Education in Mathematics and Science; Washington; D.C.; May 12-13; 1982.

Savage; D. The growing science gap in our schoois. The Washington Post, May 31, 1981.
Scientific. Eigineering Techntcal Manpower Comments, $\overline{1982} \overline{\mathbf{a}}, \underline{19}(\overline{5}), 31$.
Scientific Engineering Technical Manpower Comments, 1982b, 19(10), 24-26.
U.S. Scientific Adutsory Board Ad Hoc Commitee on Scientific and Engineering Shortfalls Within the Air Force. Special report. October 1979. Reported in Arthur G. Hansen; Scientists, engineers, and the national security: An educational perspective. The Bridge, 982.
Williams; R.T. Bencath the surface of the mathematics teacher shortage: The Mathematics Teacher, 1981, 74 (9), 691-694.
Wirszup, I. In Bruno Weinaché1, R\&D and the new nationai agenda
(Internal report $\bar{n} 0.90-225$), June 26, 1981.

DR. DAVIS (Steve Davis; School of Science and Mathematics; North Carolina): We hear a lot of statistics about teachers leaving schools; particulariy mathematics and science teachers being attracted by industryo I was wondering if anyone has done a comparison of whether it's necessarily industry attracting mathematics and science teachers or whether it's other careers attracting ail teachers. In other words the statistic I would be interested in is whether the percentage of science and mathematics teachers ieaving for other careers is significantiy higher than just teachers in general leaving for other careers.

MRS: VETTER: I don't know of any study, except the ones that have looked specifically at science and mathematics teachers going into industry, but there probably are some.

DR. ALDRIDGE (Bill Aldridge, National Science Teachers Association): We have some indirect evidence that many of the positions being filled in science and mathematics are being filled by these other teachers. So \bar{I} believe that if one looks at that, it provides some indirect evidence that we are not losing those teachers to industry in the same way we are the science and wathematics teachers.

DR. SHUtMAN: But what aboưt losing them to real estate and other nontechnicā jobs?
 losing non=science and mathematics teachers because there are no jobs for thē̈. New York City laid off 1, 500 people 2 weeks ago who were not science and mathematics teachers. In Baitimore County; as inderstand; they iafd off some science and mathematics teachers in September.
 science and mathematics teachers; supplementing with underprepared teachers for the science and mathematics field, and not having the budgets to ēven hire part二time rēsource science or mathematics tēachers where you might be able to ūè them. So there are four pointe there that are working almost againgt each other.

DR. SHULMAN: Só, Steve, in response to your question, there appears not to be a national body of data unless we have something from the vcia study.
 $\bar{a} \bar{n} e c \overline{d o t a i ~ e v i d e n c e ~ f r o ̄ ~ o n e ~ S t a t e ~ t h a t ~ i t ~} 1 \bar{s}$ not the case that people $\overline{\mathrm{a}} \overline{\mathrm{r}} \overline{\mathrm{e}}$ leaving science and mathematics any more than other areas; and there is anecdotal evidence from teachers that sā̄es the same thingo. It's a little $\bar{s} c \overline{a r y}$. In other words; it māy be teaching, not just science and mathematics; that $1 \overline{8}$ the problem.

DR: SHUMAN: I think that; over the course of the next couple of days, we may have to address a number of times this question of: Are we singling out sctence and mathematics when; in fact, the problems are generic? it think that is an important observation.

DR. HECKMAN (Pauī Heckman, UCLA, Study of Schooing): Again, it seemé tō me it's a good question. In our data in 38 schools with teachers, two things occurred. When we asked teachers why they went into teaching, they said because they iliked the subject matter or they liked the notion of teaching. When we asked them if they'd do it again (añd I don't have the specific percentage), about 30 percent of those people sald they would not do it again--acroses the subject fiē $\overline{1} \overline{d s}$.

DR: SHULMAN: I often wish in had the same kind of data on dentists because \bar{I} suspect that not all of them would want to do it again either. We never know what the baseinne to compare these things to is, and we tend to assume that in all other fields outaide of teagching; everybody is content and happy $\bar{a} \bar{n}$ pleased with what thés're doing: Maybe that's something we have to know.

DR. STARE (have some information on manpower needs in those specialtiēs thät are wost predatory on the teachers of mathematics and science. Can we expect; over the next 10 years; strong recruiting efforts to get anyone who has the talents that a mathematics teacher or a science teacher has?

MRS. VEITER: We have a number of projections made by various Goverament agencies. They rarels agree with each other. We have some made by industry that; as has been pointed out by many other people, tend to project a shortage. Government tends to project a surplus: But I think one must always recognize that when you're looking at this, you see a shortage or a surplus depending on your vantage point. And what industry is reaily saying is, "I'm afrald I will not be able to hire enough of the students who come out of the top 50 percent of the ciass and have at least a B gradépoint average." And the Goverument is saying, "Weil, we are going to graduate ' X ' number; and I don't think there will be that many jobs," forgetting thet, indeed; these people don't always end up working or even wanting to work in the area in which they have à degree. If we had ail the chemistry majors working in chemistry whoever got a bachelor' \bar{s} degree in chemistiy we'd be overrun by chemistas, to say the least. Haif the women I know have degrees in chemistry. None of us are chemists.

DR. AĀLEY (Wilson Tāley̆, University of Calffornia; Davis): I have an anecdotal coment but since it came from a sentor pianning official for the telephone company, I think he ought to be instened to. He says that he thinks it's just fine that the Government plans to increase the number of people qualified to teach zctence and mathematics in high school; thet will make it easier for the telephone company to get the programmers they are gotng to need over the next 20 years by offering them $\$ 5,000$ to $\$ 15,000$ more a year than they will get as teachers.

MRS: VETTER: The important thing to note is that there is no way of projecting suppiy and demand. You have to do both on the basis of certain assumptions. if any of those assumptions are incorrect; your projections will turn. out wrong. If they are all coriect and anybody listens to them; they will turn out wrong because people then won't do what you projected they would do because they will turn out wrong.

So \bar{I} don't have a great deal of faith in the projections i do say; however, that we can constanty watch two things; and i think they are terribly important: one is the unemployment rate within a particular type of activity or findustry; and the other; which is equally valid; is the starting salary levels we are offering to people. By and large; beginaing salaries are a very good reflection of demand for new people.

DR. LOCKARD (Dave Lockard; Science and Mathematics Curricula Development;
 \bar{B} ēen to hā̄e. Oūr experience in science education; for most of us over 25 or 30 yeārs old, is that most science teachers do not make a decision iu high school or èveñ in their freshman or sophomore year in college to become science teachers: They transfer from science majors. i think that it would be interesting to know about that; because it does affect the supply and demand:

DR- WELCH (Wayne Welch; Univeraity of Minnesota, and Principal Investigator for the 1981-82 National Assessment in Science): I'd like to offer some encouraging news. The enrollments in science courses at the high school. level-the traditional courses of biology, chemistry, and physicshave increased slightly in the past 5 years-about 5 percent-even though total enrollment in science has remained relatively stable. For example; 33 percent of the seniors enroli in some kind of science course.

It seems strange to me that with enroilments remaining stablé āt the secondary level, that doesnit quite fít very well with the loss of teachers. Át least i think we are going in the right direction. Furthermore, the deciines in science scores that were typical in the 1970 s seem to have leveled off, and some of these levels have lincreased iñ the latest assessment.

DR. BUCCINO (Alphonso Buccino; National Science Foundation): I feé à need to say that there were a couple of remarks that Betty made about NSF that
 do have ano ther point about what Bét $\bar{t} y$ said that I think may be significant, especialiy for NiE; the Department of Education; and NSF.

Betty indicated and we all know thā these data are incomplète, they have gaps and holes in them, and there $\overline{\mathrm{a}} \overline{\mathrm{a}}_{\mathrm{e}} \overline{\mathrm{a}}$ lot of difficultiē whth them: The one chart; for example; about 1972 and 1980 enrollmenta that seemed to show some kind of increāēes...I've gottē̃ into very; very gerious arguments with people about that, because when you look at the disaggregated data; there are arguments about where those increases wight be.

At any rate, the point I'dinke to stress is that i hope we can take the attitude here that Betty's presentation is not the last word on the subject, with ail due consideration to Betty; as far as data itself are concerned.

MRS: VETTER: That's wight.
DR. BUCCINO: And one of the things that this conference might pay some attention to and sugsest to us in the Government is that what we need to do is to keep an eye on this situation; perhaps give us some guidance as to the data and information collection that might be done. A11 of us agree that this problem; no matter what happens; 18 not $801 n g$ to disappear in the very near future: We've thought about it at NSF in 10-year terms. This teacher problem is at least a 10 -year problem. So there will need to be information and monitoring over a long; long period of time:
 give the government- the Department of Education (mostiy NCES) and NSF to some extenc-some guidance on monitoring and information needs that would be heipfui here.

MRS. VETTER: \bar{I} think everybody in this room who has been trying to work on the data is highly grateful not only to hear you say that, Al, but to see it coming through in the budgets and auch.o.that; indeed, NSF is now interested in the probiem officiaily when we have known that many of you were interested in it unoficially before.

DR. SHULMAN: One of the things I hope the members of this group will keep thinking about as presentations are made is the implications of some of the terms we use; íke "underquailfied" ō "quaiffied" in teaching; as an example; and what if anything we know about what those terms represent.

These are important questions. They suggest; for example; that if we treat the problem of the qualification of mathematics teachers by doubling the number of mathenticics courses they take in the more advanced mathematics courses that the university offers; perhaps there will not be a magical resolution of the problens of mathematics instruction, any more than the problems of the distressing rate of infant mortality in the United States compared to other Nations is likely to be solved by adding an extra year to medical school.

I'm raising this point because i think that we have to think through how obvious some of the solutions are and whether it's a mater of simply adding more of what we're doing or thinking through some radical tranforiotions of how it is we have been going about our būiness.

NATIONAL NEEDS FOR SCIENCE AND TECHOLOG. LITERACYTHE ARMY AS A CASE STUDY

Wilson R-Tailey
Professor, University of California; Davisfinvermore

From the Yankee inventor through Thomas Edison to Silicon Valley, the Unítéd Śtates hà provided fertile ground for innovation in technology. After Worid War II, almost whout effort-and certainly without conscious direction=-we dominated the world in introducing and incorporating new technologiē into our sociéty and in exporting them to the rest of the worid. Like āgriculturā producé, technology appeared to be farever renewable rēsource: $\bar{A} \bar{s}$ fast \bar{a} we sold yesterday's product; tomorrow gave us à newer and better one.

Alas: For à vartety of reasons, for actions taken decades ago ā well às those today, we have lost that lead. Still strong, we now have to rerkon with stiff international competition. Whereas 5 or 10 yearse ago only a few of us were cúcerned by early trend \bar{s}, today everyone hase focūed their attention ou the symptoms of this decline. In the confusion of cause and effect, a number of studiés and referencēe indicate that; in the 1980 's; we are facing or wili facee:

- A national shortage of scientists and engineers (S\&E's);
- A loss in the "technoiogy" race;
- Curriculum problems in primary and secondary school mathematicè and science;
- Instructional and facility limitations in universitiés.
íf $\overline{\mathrm{t}}$ rue in whole or in part, these observations mean problems for our Nation. In particular, Army leadership became concerned about the Army's ability to discharge its $\overline{\min } \overline{\mathrm{s}}$ ion in the next decade and beyond. In the fall 1981; Deputy Ageistant Secretary Amorettu M. Hoeber asked the Army Science Board (ASB) to study these and other indicators; to assess their validity; and to recomend actions for the Army and other organizations that.would relleve the situation. The present paper is based partly on the November 1982 "Summer Study" report of that task force (Talley, Note 1) and the November 1980 report of the President-Elect's Task Force on Sciencee and Technology, as well as on other studfes and personal observations. Thus, while many of the findings anc actions proposed here are to be found in the ASB Sumer Study or in the task fōce report; not $\bar{a} 11$ are; and $\overline{\text { so }}$ I must take responsibility for them.

ARMY SCIENCE BOARD SUMMER STUDY ON SCIENCE AND ENGINEERING PERSONNEL

The Summer Study is one of the most complete assessments of the present and future S\&E situations. The conclusions of the ASB Summer Study as to the Army's S\&E problems are much more optimistic and positive than had been expected. Unfortunately; the problems that were identified and the solutions proposed are not as popular-in both senses of the word-as the participants thought would be the case when they began.

Deapite the fact that the Arwy tends to be the "canary-in-the-coal-mine" with respect to ite sensitivity to S\&E manpower fluctuations, the fundamental conclusion was that the Army problems are manageable in the near term. This is a very poifive finding, for the Army's R\&D efforts and S\&E requirements are a representative subset of the Department of Defense's (DOD) efforts and requirements, which, in turn, are similar to those of the rest of the Federai Government- The Army's ŚsE quantitative requirements-numbers of people-are not à large factor in any national shortage. Potential problems relātè moré to quality than to quantity of S\&Eis. However, the Azimy hā cause to be concerned with the general national lēvel of technological litēracy.

It was also found that, while possible solutions to the Azmy's problems need more than just the Army to effect them, the Army can play a useful roie in soiving some parts of the larger national probiem.

In what follows, the needs and actions of the Army tend to be gimilar to those of other elemente of $D 0 D$, other Governiment agencies; and the private sector. One area of the Army Science Board report-the need to increase the numbers of career officers trained as SaE's-is pecuilar to the Anmy and so will not be addressed here. Thus, this paper will discuss the most general findings and recommendations wherever possible. However; the ASB report is one of the most refent, complete analyses of the needs of a major user of scientific and techincal manpower and les thus an excellent; specific case study.

QUANTITIES OF SCIENIISTS AND ENGINEERS: SUPPLY AND DEMAND ESTIMATES
The original impetus for studying S\&E manpower for the Army. was a perception that there were-or would be-shortages and that the Army would be unable to compete in the labor market. Similar concens have caused the other services and DOD to examine the situation and trends (Caihoun, Note 2; Hermann, Note 3; Rabin, Note 4; Bennett, Note 5; Seitz, Note 6). These independent studies ail tend to say that there is not à general manpower problem, but that there-are problems.

But why is there no quantitative S\&E probiem for the Army? Demand éstimatē-and to a lesser extent supply estimates-of future cicientific talent are notoriousiy umreliabie. They have proved to be so in the past; they are not inkely to enjoy more àccuracy in the futures. Indeed, even a current census of how many physicista are now plying their trade $1 \bar{s}$ imprecise: Some do not wish to be counted; some degreed phyicists are not working in the field; and some in the field were not originaily trained in physics.

Given some figure for the present pool of a particular type of scientist; however, actuarial estimates give reasonable numbers for the declines due to deaths; retirements; and job switching. This third factor is sharply affected by external economics andor scientific breakthroughs in particular fields.

Complicating the picture is the fact that the decision to preserve the option of going into a career in the hard sciences or engineering is best made at the junfor year of high school-grade 11. The typical source of information about job opportunities for these youngsters is television and the print
media: Because "news" is more of ten "bad news;" the typical story about jobs for scientists and engineers is invartably about unemployment. There will be an occasional story about high saiaries, but oniy because a crittcai shortage of new biood is about tō cost the United States its leadership in field 'x'."' Thus; because of the 6- tَo 10-year "processing" time; we tend tō have cycles in the technical manpower picture. At its worst; the oversuppiy in scientists and engineers result in unemployment/underemployment approaching that of the general population. Because the "normal" unemployment rate for technical personnel ise an order of magaitude lower than that for the general population, the periodes when the tēchincālly trāned lose thēir émployability edge occāsion widespread publicity.

The bottom ine on any set of projections is whether the end result ts predicted to be a matching of jobs to people or a mismatch in one direction or the other. Because such "net" predictions tend to be reverse prophecies (that is; they are the opposite of "self-fuifilinng" prophecies), the important consideration in evaluating the validity of these predictions may well be the institutional home of the people making the projections. For examplé:

- Teame composed of thosé representing industry teñ to predict future shortfalls. This produces an attraction of students into those fields and, eventually; glut; and industry finds itseif in a buyer's market for talent.
- Professional societies, espectally those that are protective of their members' careers; can be counted on to predict miserable times ahead. The "goiden age" is past: jobs won't be avallable; industrial and Federal research budgets are down, and so on. If the audience of young people believed these dire forecasts and if there were no other influences, there would be a diminution of new entrants into the pipeline, some already in would drop out, and the end result would be an eventual seller's market.
- Academicians face a dilema in that their ingtitutions need grist for thetr academic milis, but their graduates need jobs: Breaks from an understandabie paraiysis of indecigion generally result iñ welltempered, middie-of-the-road projections. However, these usually are projections that tend to run ageinst the stronger of the two currentē above.

Despite these problems, heroic efforts on the part of peopie inke Betty Vetter have produced useful quantitative estimates of the current supply of scientists in the United States, with the variations in these estimates being due mostiy to differences in data bases. For instance, to be included in the Nat́onal Scíence Foundation's (NSF) total scrence and engineering, pool, an Individual must possess two or more of the following qualifications: (1) highest degree is in science or engineering; (2) current or most recent employment is (was) in a science or engineering job; and (3) selfidentification is as a scientist or engineer. qualified scientists and engineers employed in non-S $\& E$ jobs who report their non-S $\& E$ field are not counted in the survey. The $\bar{s} 1 \bar{z} \bar{e}$ of the pool, as reported by the NSF; $\overline{1} \bar{s} 2.741$ million.' Considéring that 5.58 mililon persons have earned one or more
degrees in science or engineering since 1948; one could conclude thàt saE $\overline{\text { s. }}$ hares with law traintig the fact that 50 percent of thos trained in the field do not practice the profession:
of the DOD employment of S\&E's, the Amy can be considered "average or "representative" of three services. While the Army has fewer uniformed S\&E's than the Air Force, it has more civilians. Thus; it is not surpioging thät the recent ASB Sumer Study agrees in generai with the conclusion of other DOD studies in this area. Nameiy: Despite occasional regional mismatches of suppiy and demand in some fields; the problems of the Army (and of others. in DOD) in recruiting and retaining quality S\&E's are only secondarily related to these .ahortages. While exceptions can be found, particularly for upper level S\&E vacancies left from the massive retirements and resignations in 1979; neither available aggregate statistics nor interviews with Army R\&D managers support a conclusion that the Arvif is unable to attract and retain adequate numbers of S\&E's. This is particularly true at the "working level"-GS-7 to GS-13. Since October 1980, the rize of the Aimy S\&E workforce has grown by approximately 7 percent, from 27,500 to 29,600 . The Army S\&E voluntary ioss rate, which in the 5 -year period 1976 through 1981 ranged from 1-1/2 percent to 2-1/2 percent, compares favorably with the Department of Defense as à whole and with comparable industry statistics.

In the event of a real shortage, and certaninly with respect to hiring quality S\&E's; the Army is at a competitive disadvantage with the private sector for several reasons: The Army ī uiable to pay for expenses incurred In an employment interview; the Army takes a cousiderabie amount of time to make a job offer; and Army atartige salartes are lower. Although the Army may hire directiy, scientists must appear on an office of personnel Management register before the Army can even consider them for employment. This is particularly unfortunate in the case of computer scientists; for whoin the national shortage is as berious as it is for engineers: In ahort, the Goverament personnel system does not accommodate to the needs of SaE employees-they are \bar{a} winority much wore \bar{s} trongiy affected by market forces than the majority of Government employers.

Overail; however, the Army has no "numbers" problem because the Army employs oũly about 1.2 percent of S\&E: s; tis skill mix lags the current nationai distribution (so the Arwi does not compete for the newest, thus smallest, components of the pool), and it usually does not attempt to compete againgt industry for the very top S\&E's.

That ends the good news.

REDUCING DEMAND

The fact that thera does nōt appear to be a quaptitative problem with S\&E's should not lead to a fāse sense of security, since there is no objective basis for concluding that the quality of the Ste's is adequate to meet Arwy requirements. Each year, Bowe 150 - 0.200 S\&E's voluntarily leave the Azmy work force at the GS-12 level. This fact may not be disturbing in itseif. If, however, these losses comprise the higher quality from the journeyman level, $\bar{a} \bar{s}$ many managers beem to believe; the nuinber become alaraing. There are parailei iogses in other DOD services (Rabin; Note 4) and in non-DOD agencies.

There is a distinct lack of objective indicators. Anecdotal comments, ranging from "quality has never been better" to "none of them are competent," can be found to support any claim for current new hire quality: Similarly, quality assessments of existing S\&E's are subjective and diverse Unless the Government commits itself to making objective assessments of staff ouality; which can be monitored for trends; it will never be in any better position to confidently assess the quality of its S\&E's.

Finaliy, the Arwy and the other services are shifting toward ever higher technologies. ít makes ít $\bar{t} \dot{\text { me sense to spend millions on sophisticated }}$ hardware and software if the people-not only officers but enlisted personnel as wél-needed to maintain, operate; and repair the systems are unavailable: It may be the question of national technological literacy that is the most critical to the Army ās it strives to discharge its missioñ.

Theré $\overline{\mathrm{a}} \mathrm{r} \bar{e}$ several ways to attack mismatches of supply and demand: One major thrust to reduce unnecessary demand is to review and rationaifze the manner in which defense contractors-a major sector of ail S\&E employers=-use such people. DOD is captive to a procurement process that wastes S\&E talent in the development of new systems and produces finished items that demand high skilil levels of the users.

The $\bar{A} \bar{S} \bar{B}$ Sumer Study points out that multiple contractor competitions may result in largely wasted effort by many of the best S\&Es of the losers. This may amount to the loss of tens of thousand of valuable person-years. The waste is particularly evident when all contractors are technicaily qualified; DOD specifies the design point details; and the competition seeks oniy to establish the lowest credible cost estimates; here; the low bid may result from minimum factory costs; yet the most creative and competent S\&E's of the losing contractor(s) waste their time producing saparate designs; all of which reet military specifícations.

Many DOD contracts specify complete system integration to allow minimizing initial acquisition cost. Thus they make no provision, provide no budget and give no competitive ćredit for dēsigns having uinfmum times and costs for sȳtem upgrades to overcome obsolescence. This can result in the use of numerous contractor S\&E person-years for major redesigns or in completely new programs to correct a system for obsolescence of some of its key elements; despite the fact that other elements may not be obsolete for many years.

Thére ís as yet too little appreciation of the advantages of designing and
 training to use and that are easy to maintain, operate, and repair. Not only do such systems enhance operational efficiency; but they keep the requirements on the intēlligence and educational background of operating personnel to reasonable levels. This same consideration applies to civilian products; but the market tends to favor user-friendy products-aimpie survival will $\bar{e} \bar{v} \bar{e} n t u \bar{a} l y$ produce the easiest-to-use products.

The tendency to look only at front-end costs is not restricted to the DOD. The sewage treatment plant program of the U.S. Environmental Protection Agency (EPA) is a particularly apt example; because of its eventual impact on
primary and secondary education: The EPA pays 80 percent of the capital costs: the State and iocal governments pay the rest. The problem is that the $\$ 60$ billiton is spent primarily as a public workes program. The technology installed is that of the $1930^{\circ} \bar{s}$. Becauge of this, the operation and māintenancé cos̄ts over the 30 -year life of these structures will be as much as five times thāt required of plants using the latest technologies. These facilities require an unnecessarily high level of techntcal competence for their operators: And the local gtvernment must pay the operating costs with tax dollars that couid have gone for primary and secondary school support: Thus we have an example of a lack of "technological litéracy" producing a situation that is not only costly but tends to continue technological 111iteracy.

INCREASING SUPPLY
There are several aspects to increasing the suppiy of sce's. One has to do with increasing the quantity of S\&E's; another with maintaining their quality: Yet another touches the matter of upgrading and increasing the pool of high school graduates capable of (and interested in) careers in science and engineering-and thereby of raising the general level of our national technological literacy These topics are difficult to separate.

Training Scientists and Engineers
No óne has been able to éatablish an "ideai" studentfaculty ratió, nor has anyone been able to āscertān the maximum ratio beyond wich the quality of education declines. However, based on authoritative statistics of the past 15 文earis, it is clear that neither the number of faculty nor the number of new Ph. D.je (the pool from which faculty are drawn) is growins as fast as undergraduate engineering enrollment.

In particular, the overall student/faculty ratio In United States engineering schools has increased by nearly 50 percent since 1974 and 18 continuing to increase. Furthermore; the number of new engineering Ph.D.'s has been failing "since 1972, with most of this reduction due to declining numbers of United States citizens earning Ph.D.'s. As a result, the outiook for the noxt decade is still fewer engineers qualified to fili facuity positions, with the likely outcome being further Increases in the student/faculty ratio. It is certain that if these trends continue, the quality of undergraduate education for engineers will at some point deteriorate to anduracceptabie ievel.

Another problem is the ability of univerities to maintain first-rate research facilities; as distinct from maintaining first-rate teaching equipment. A decade or two ago, the major research univeraities had facilities that matched the best to be found in induatry or $1 \bar{n}$ Government. No longer. Deferment of repiactug equipment bas reduced the ability of some schools to train S\&E's in the forefronts of certain felds. Compounding the problem is the fact that new equipment is far more axpensive than that it replacees--far beyond increases at tributabie to inflation-and becomes obsoiete even more rapidly. This would indicate that the traditional methods of rebuilding these $/ \bar{a} \bar{s} \overline{s e t s}$ (Government or foundation granta; say) are not likē \bar{y} to work.

Incrēasing the High School Graduate Pool

Greàt concern hās been mounting within the passt few years over the lack of scfentific and technological literacy, i.e., understanding tēchnology and its potential; of United States high school graduates. Many factors are responsible for this dismal condition. Very few secondary students take any mathematics or acfence courses beyond i0th grade. : This is in marked contrast to countries such as Japan; Germany, and the Soviet Union; which provide rigorous training in mathematics and science:* In many cases; students take only the miaimum amount of credit ticurs in these subjects to fuifili the high schooi graduation requirements. Because of these minimum standards; a smail
 chemistry; or calculus. Honors or advanced courses are available at some schools; but they are for those few who have taken the prerequisites and who want to tāke those coursès. Only about one-sixth of all secondary school $\bar{s} t u d e n t \bar{s}$ curirently tāke junior and senior coursēs in mathematices and science.

The common perception is that this will eventually reduce the numbers of people studying for bachelor's, master's, and doctorate degrees in science and engineering. There is little evidence to support this contention. on the contrary, as engineers make up 6 to 10 percent of the coliege popuiation, the pool of hígh school graduates that couid major in S\&e is stili far iarger than the number who do major in S\&E. Fluctuations in the number of Sax's in coilege depend more on high school students perceptions of career opportunities than on the quality of elementary and secondary mathematices and science education.

Increāsing the General Technological Litēracy

The more serious problem is related to the ability of our increasingly technological society to function smoothiy if our citizens do not become more technologicaliy ifterate. While there can develop the general problem of an electorate having to decide between two technological options without fully understanding efther; the military has more specific problems.

It has been suggested by Dr. Russponeal that:
"We won World War I because our troops could repair bicycles; and we won World War II because our troops could repair trucks; but we could lose a World War III unless our ,troops can operate and maintain computers!"

[^0]Even if this is only partly true, it iliustrates the fact that the Aray should be very interested in the generai popuiation's level of techological competence. "High technology" is a reiative term. The typical U.S.S.R. inductee wust be taught to drive a truck, while his United States counterpart begins service with that skill. This operational advantage should remain with the United States even to the year 2000, if the average American retains a level of technological literacy comparable to that he or she has today.

Unfortunately, the present "educationai system" in the United States
 technological ifteracy: Consider: of those high school graduates who bave little interest in or aptitude for the hard sciences, some wlil go on to college. Not surprisingly, few of these people will take advanced mathematics, statistics, physices, or chemistry. Given these circumatances, théŕr career choices are constrained. Among careers open to them is "education," and some will select that field. Upon graduation froin college; they become accredited primary and secondary teachers. While some accredited teachers are competent to teach science and mathematics; they are in short supply:* Indeed; those who can teach these topics are eageriy sought by industry. Ás it' \bar{s} rāye for competent mathematics and actence teachers to receive premium pay, it takes dedication to resist industry. The odds then tend to favor the situation in which the next generation is exposed to mathematics and science by peopie uncomfortable with the topics. Studente taught subjects by teachers who are incompetent in those areas are unlikely to explore the topics further. And so the cycle repeats.

SOLUTIONS: SHORT- AND LONG-TERM
As present national problems and trends were a long time in building, it is not likely that the solutions will be easy to apply nor quick to take effect. Further; no one element of our society can provide all the answers by itgelf-certainiy not; for example, the Army. And as an iliustration, the Army can remedy only a few of its problems. But there are actions thēt can be taken by the Azmy; by the DOD, by the Government, and by the private sector that can have immediate impact-. And there are other actions that can iead to the long-term resolution of our difficulties. . Both short-term and iong-term solutions should be attempted.

The first actions should be those that reduce the demand for scientists and engineers. As an example, DOD acquisition proceduree thet presentiy may exacerbate contract needs for S\&E's can be fargely cörrected by expediting.
*A recent survey conducted by the National Science Teachers Association found that; in the worst region-the Pacific States area- 84 "percent of newiyemployed science and mathematics high school teachers were unqualified to teach in these areas. paul Hurd, emertus proféssor at Stanforq, reported at a May 1982 conference of the American ABsociation for the Advancement of Science that; nationwide, of the teachers employed hy high schools to teach mathematics or a science for 1981-82; 50 percent were unqualified and were teaching with emergency certificates.
implementation of those (Deputy Secretary of Defense). Carlucci Initiatives related to procurement efficiency. In particular; more clearly defined selection criteria, including identification of disqualifiers (such as overłoad; lack of credibie capacity, lack of credible ability to build-up; etc.) could discourage potential losers from entering competitions; thereby probably reducing the number of companles that waste S\&E efforts by 40 to 60 percent.

Ōver the longer term, if systems were engineered to permit product improvement once fielded, there would. be less frequent need for massive R\&D efforts to develop totally new systems. (An added benefit is that the cost of defense systems probably would then decilne.)

The use of computers for various types of engineering and scientific work can substantially reduce the total $\bar{S} \& \bar{E}$ hours required for a program, particularly during large program buildups requiring numerous new hires; and thus also reduce the need for more S\&E's. However, many companies, particularly at the second and third tier subcontract levels, will need Government help to defray the cost of computer intensive systems.

The second 'tier of actions should be to provide new S\&E's for the Nation and to upgrade the skills and talents of existing S\&E's. There are several such actions: The first, if adopted, could have the same sort of impact on S\&E education as did Sputnik.

Defense contractors have utilized the approximately 50 percent tax Write off to tender support to universities. This support is now needed, especially in those areas of technology vital to national security.

The sinple expedient of allowing 100 percent recovery of university-related expenditurēs by contractors on defense contracts would schieve the desired results: Examples of such expenditures would include the following: feliowships; purchase of equipment; refurbishing or builaing facilities for key technologies; unrestricted funds to aid faculty recruitment and retention; participation in nontask specific activities such as industriai ifaison; Visí; and CAD unjuercitylindustry copsortia; and employee education expenses. currenty disallowed.' Each contractor should be allowed to structure his own program; guided by his enlighteged self-interest; and should have the freedom to select universitiē of his own choice. The amount of expenditure \bar{s} can be controlled by éstablishing a ceiling; applied uniformiy; as a percentage of the contractor's DOD ales:

The dod neéd not work only through its contractors. it cañalso move dírectiy to bolster the ability of universities to provide competent S\&E‘s by, for example, éxpanding scholarships and féllowships targéted àt fielde of interest to the $D O D$ or continuing and expanding the practice of employing
 that are relatively neglected by the rest of our Nation, consideration should
 universities. For example; the Army sunports a Center for Mathematical Research at the University of, Wisconsin-Madison and has begun to set up three Centers of Air Lift Technology. Even in areas that are currenty "hot" in
academia, elements of interest to the DOD sometimes tend to be underexploited. For example, in biotechnology, quick vaccine production and detoxification agents may never be developed through marké forces.

The term "center of expertise ${ }^{\omega}$ is used to span the spectrum of ways to gather together critical masses of people, as well as convey an intention of stability in the funding pattern. "Boom and bust" funding must be avoided. With aufficiert duration, support in a technology/science area creates a pool of talent. The talent may be the workers at the center or its graduates, but the people are an implicit resource, as consultants ō às prospective employees. Thus; the center would produce not only data, but also the personnei necessary to make further advances in the ficld.

This center of expertise-in essence; the academic equivalent of the "warm production line - - would be malntained to assure a stream of products/talent in $\overline{\text { a }}$ vital area: Either these fields or those where progress is peinfuily slow may require many years of DOD support. But even for these, añ end must be anticipated even as support begins. Thus; à general rule in establishing centers should be the expectation of an eventual end to sole DOD support; and periodic reviews (sagy, every 3 years) should be made to determine whether continued support i.s warranted.

No one 1s likely to object to the above center of expertise concepto Let me now suggest a more drastic solution: That the DOD and comparable high technology institutions must move into an activity once solely the province of American universities-the education of graduate S\&E's in the conduct of research.

Not only are the scientists and engineers of auch agencies as the Department of Defense; the Department of Energy (DOE), the National deronautics and Space Administration (NASA), and others frequently local or national expertsi in their areas of techncal competence; but the instailations of such agencies - particularly the laboratories - may have research equipment unavailable to local colleges and universíties, Several agencies have programs for internal personnel upgrading and collaboration whth local schools. Such programs should be extended and new ones begun aimed at. the utillzation of Government personel (as formal instructors and research advisors) and Government facilitiē (ās research tools) to produce mastex's and perhaps. doćoral graduatē. Ā those clements that contribute to successful programs emerge; other elements of the technical commuity should adopt or adapt them for their own programs.

Models for these programs already exist. For example; there are 1,200 evening school studente at The Johm Hopkins University who are taught at the Applied Physics Laboratory (APL) by instructors who are usually APL employees exceptionally qualified in their areas. About 20 percent of the students are also APL employees: The curriculumi lead to master's degrees.

At the Department of Energy's (DOE) Lawrence Livermore National Laboratory; over 100 graduate students are working for master's and doctorate degrees in the Departiment of Applied Science (DAS), a 19-year-oid department in the College of Engineering of the University of Caiffornia, Davis. Davis
and Livermore are 70 árr-miles apart: Students not only have accēses to some $\$ 450$ milifon of research equipment; but can also receive all their formal coursework at itvermore from instructors chosen from among the $900 \mathrm{Ph} . \mathrm{D} . \mathrm{e}_{\mathrm{s}}$ working at the livermore lab.

An excellent case can be made for allowing, if not requiring, "real worid" experience as graduate students eàrn their degrees. As an example; the Fannie and John Hertz Foundation encourages its fellows to accept part-time and summer employment with cooperating institutions such as the ifvermore Nationai Lāboratory, the Los Alamos National Sctentific Laboratory, the Chāries Starik Draper Laboratory; the Princeton Fusion Research Center, and others. Other efforts at involving graduate students with "reai" research include Livermore's Navy-sponsored $\mathrm{S}-1$ "supercomputer" program; which routinely usē MIT, Carnegie-Melion, and Śtanford computer science graduatè situdents ā part-time laboratory employees. The Ph.D.'s' produced by thēe programs have an understanding of the frustrations and rewards of a career in research seidom acquired by thēir peerē who hāve nevè ventured outside academe.

The suggestion that universities give up the physical propinquity of their graduāte students is difficuit to sell, but it pales in comparison to the final recomendation. of this paper: that the science and mathematics education in primaty and secondary schools is too important to be left to profesesional educetors who are technologically ilitterate.

The geographical dispersion of Government laboratories and installations offers opportunftes for Government S\&E's to alleviate the national problem of technological literacy in elementary and secondary mathematics and science through a variety of mechanisims. The Government could, for example: provide release time to Government scientists and engineers to teach in public schools, either for whole semesters or through team teaching approaches; providé equipment and laboratory facilities to local schools; initiate enrichment programs; during the school year and or the summer, to motivate students to pursue scientific careers; and support the work of existing comisisions that are directing their attention to mathematics, science, and technology education (e.8.; the National Science Board, the National Comimission on Excellence in Education).

About a decade ago; the NASA-Ames Research Center began outreach programs that have involved junior and senior high school students and teachers in the physical and biological sciences. The programs include undergraduate and graduate students and their facuity, and they range geograpuically from local schools to Midwestern universítes. Senior researchers at Ames have conducted formal courses at nearby Stanford University.

Other nationai téchnoiogy-oriented organizations with local operations; \bar{f} or example, \bar{t} é iocal telephone company or the local power utility, could be induced to assist the Government. Also, efforts of industry and professional organizations $\mathfrak{t o}$ prepare materiā to hēlp motivate student interest iñ sćfence and engineering should be used. For example, the American Society of Mechanical Engineers, with the help of Bendix, Belil labs, Proctor \& Gamble, and Digital Equipment Corporation; is developing a 27 -minute film targeted at junior high school students that demonstrates the rewards and benefits of
bē̄̄̄ an ēnginēer.* Finally, the provision of part-time and sumer jobs for skilied wathematics and science teachers should be an obligation of all high-tech firms in an areā Ultimately, teachers compengation should fōiow market forcea; rather than seniority or other artificial rules.

Lét mé state explicítiy that "Government S\&E's" and "Government facilities" inciude the Department of Defense. The Dod has had a long history of cooperative association with education in our country . While it may be currentig popular tō rail against Defense or Energy such agencies fulfili needed functions: They should be utilized as resources where they cañ contilbute; not be oatracized.
 difficuit for technically competent but amateur educators to gain immediate access to the schools. Provisional or temporā̄ certificates may be granted for short term teaching opportưaities. The purpose of these bureaucratic barifers should be to protect students from unqualified teachers; not to protect a system from competition. If reform from within-cooperation of State and local school authorities with those concerned with solving our S\&E problems-does not occur; the revolution from without will surely follow. : The penalties-the lost opportunities to provide first-rate exposure to science and mathematics-are just too great to be permitted to continue.

[^1]
REFERENCE NOTES

1. Taliey; W. $\overline{\mathrm{K}}$; ét $\bar{a} \overline{1}$ - 1982 Summer study in science and engineering personnei. Washington, D.C.: U.S. Army Science Board; November 1982.
2. Caihouñ, J.L. Defense manpower data center studiē (Mēorandūn): Washington, D.C.: U.S. Depātīeñt of Défeñē, Fēbiuary 1982:
3. Hermann, $\bar{R} . \bar{J}$. USDRE: Independent review of department ốn defensé lāborā̄oriēs. Wā̄inḡōn, D.C: DOD Defense Research and Engineering; Märch 1982.
4. R̄āiñ, $\overline{\mathrm{H}}$: Study of scientists and engineers in DOD iaboratories (Draft Report): Waskington, D.C: DOD Laboratory Management Task Force Personnel and Manpower Working Group; June 1982.
5. Bennett, I. Report of the defense science board tāk force on university responsiveness to national security requirementas. Wā̄inḡon, D.C.á U.S. Department of Defense; January 1982.
6. Seitz; F. Research and development for military strength: Concerns and recommendations. Washington, D.C.: Georgetown University; The Panei on Sclence and Technology, April 1982:

BR: AIDRIDGé 亡é $\overline{m e}$ repeat a comment which Dr. Talley made. He said that what we needed to be concerned about was to improve the techoological literacy of the population, and that our problems were not pincipally to better prepare scientists and engineers. I want to raise a question: We ali know that the curriculums of the $1960^{\prime \prime} \mathrm{g}$ in the secondary schools were designed principaily to prepare scientists and engineers: We aiso have firm evidence that those curriculums are inappropriate to the present student body; that is; for the majority of them:

Our concern is this: In all the Federal programs, in all the bills that have been introduced in Congress, none has proposed large national efforts at redevelopment of the curricula. Instead, they want to provide all 17,000 school districts with an opportunity to reinvent the wheei in ail i7,000 places. i'd like to get some comment about that.

DR. TALIEY: You are right. If the population had a higher level of technological literacy, we would not have a problew with finding qualified primary and secondary mathematics and science teachers. Let me be candid. Right now, students get turned off to mathematics or science in high school. And some of these students $\overline{g o} \overline{\mathrm{an}}$ to college. So what fields can they $\bar{g} 0$ into where they don't have to have mathematics or sciencer There are a number. One of them $1 \bar{s}$ education. So thē $\bar{g} 0$ through and they become teachers. And thē̄ are expected-they are forced-to teach mathematics or science; a field in which they never took any more courses in coliege if they could get away with it: It was distastefut to them when they were kids themselves. and they are erceptionai if they can avoid communcating the distaste they feel to the next generation; and so the cycle repeats itself.

What I am proposing is that you get the people who know how to teach to teach-"Everyone ought to be a scientist and engineer inke me."
\bar{I} believe that Betty (Vetter) mentioned the difference in teaching between the United States and some other countries....where we face our kids with abstractions; some of which were those high-powered mathematics and introductory science courses that were generated post-Sputnik. I would assume that if you had available to you someone very competent and enthusiastic; you would not scare the kids off.

I just don't know that we need to develop new curriculums, which is the answer to your question; but i wanted to get my comments in first。

MRS. VETTER: I think we are in desperate qeed of some new curricuiumso And I don't think we necessarily would be if we had a generation of science and mathematics teachers who had grown up with ali of the competencies that we would all hope our science and mathematics teachers have. But the fact is that that is not what we have and that is not what we are getting: And at the moment; $\overline{\text { don't see any prospect that we will be getting it p wich telis me }}$ that what we need, among other things, are some better directions.
i have been reading some things about the way textbooks are selected, which probably would come as no surprise to many of you. But a lot of what I have been reading on how public schools' books àre selected, ceertajoly those in science and mathematicse, scarē the daylights out of me. I would like to sēē some good curriculum dévelopment done on à nātional scāle iñ a national lāborātory--trying it out firs̄t, but coming up with some good information that would then gèt into the school system, not the way current textbooks are chosen.

DR. SHULMAN: I would ifke to make tro comments on those comments; and then toss it back to the fioor: One comment $\overline{1 s}$ that i avi sure you have been watching the beginnings of the reports of the many secondary education comissions, which range from the Carnegie's to the National Academy of Education's to...I think there were 32 at last count.

Thère seemes to be an intērēsting confluence of perspectives coming_out of these comissions on secondary education, which will be very consistent with what Betty Vetter seemed to be arguing for; namely; that the proportion of the high school curriculum that is elective, and therefore affords the opportunty for students to avoid taking what Betty called the academic courses, should be sharpiy reduced, and that there ought to be much more stringent requirements for everyone who goes through high school. And you are seelng this now reflected in recomended changes in Stāté requirementē for high school graduation.

Thēè àre very intēresting recomendations; but from a curricular perspective there is something rather magical about them because there really are no curriculums for those students in physics or chemistry or algebra in who have been avoiding those courses for the last 20 years. if there is anything we know for sure; it is simply that using the same curriculums they have been avoiding is probably not going to be the answer.

DR. TALLEY: This is a question for tomorrow. We will have a person from the Argonne National Laboratory where they have been doing this sort of tryng. My question after that presentation is: Are you producing the next generation of scientists and engineers or just trying to raise the general level of technological literacy? If it's the latter, have you had any problem figuring out the curriculums to do it? And that is tomorrow's question.

DR. SHULMAN: I'11 make one other observation about curriculum, and that if the potential danger in treating curriculum as something that we do nationally that we then finish, poilsh, sand down, package; and send out. We might begin to think about curriculum-making and curriculum development as something that ought to invoive tens of thousands of teachers across the country, on the grounds that making new curiciculums or revising old ones, in collaboration with scholars of various disciplines and with educationists of various sorts; is likely to turn out to be one of the most powerful forms of teacher education and teacher development that we have ever seen. Speak to the teachers who were involved in some of those NDDA and NSF institutes in the 1960's. And don't just ask them about how good the units they developed were: ask them what kinds of changes were wrought in them as understanders of science and mathematics and as teachers thereof.

DR. RAIZEN (Senta Raizen, National Academy of Sciences): I really would inke to assoctate myself with all of the remarks here about the desirability of a technologically educated citizenry. But I do have a difficulty, and I think it is a previous question to the curriculum question: I would like either Dr. Talley or anyone here to tell me what the functional definition of \bar{a} zechnologically ilterate person 18 . Because until we can define that, we don't know what to put into the curriculum; no matter how we get at it.

DR. TALLEY: I think a technologically literate person is one who would recognize that a new technology is introduced to solve a problem; that there is no such thing as an absolutely benign process, technology, or gadget; and that he or she, as a consumer or a voter of a taxpayer or the like, is $\overline{8} 01 \mathrm{ng}$ to have to choose among options, none of wich is perfect.

The scientific method is realiy a neat method for deciding whether or not you are being conned. I could not think of a polite way of stating it. I don't think it hās to do with having a certain number of courses in tris or calculus or chemistry-just an appreciation that the universe does not run by magic.

DR. Hicks (Laurabeth Hicks; U.S. Department of Education): I can remember in the 1950's when large amounts of funds flowed into programs to prepare school counselors to identify elementary and high school students interested in and having the potential to develop high level skills in mathematics and science. Are there data to indicate what impact... what success...the counselors had in these programs?

I would also like to know what should be or will be the role of the counselor? Do the counselors need retraining in order to help the schools and studente with the mathematics and science crisis?

DR. SHULMAN: I Buspect you know that before teachers are laid off, they lay off all the counselors. Counselors are gencrally the first group to go. And it think what you are suggesting is an interesting kind of researchable question, which is: To what extent are we in error to assume that those people who are not in classrooms are not playing an important educational role with respect to science and mathematices education?

DR. HECMANN (Paul Heckman, University of Califorita; Los Angeles): i would inke to reinforce the notion that curriculum is a fundamental issue here. It seems to me that one has to rafse the question of technological literacy in the light of what is a general education for children and youth? When we speak before a group of art educators; one of the things they ask for is an increase in time for the arts. If you go before a group of science persons; they obviousiy advocate more science.

It seems to me that we are going to have to rafse this question in light of what happens at a school, rather than averages: And it seems to me in our study of schooling at UCLA; for example; even though there were averages, thēre were some very severe schooi-to-schrol variations-something like 3 percent of art courses in one school versus 20 percent allocated courses in another:

My other statement has to do with requiring more courses. I guess the question I always have--and, again, I think it relates to Dr. Shulman's statement: Is more better? When we looked at our data, one of the things that came across loud and clear was that the predominant method that was used by teachers in a thousand classrooms was simply lecture with students sitting and ifstening. I'm not sure students ought to sit in mathematics ciasses ifstening more for a ionger period of time. Therefore, it see $\bar{⿻}$ the caili for addressing the curricuium is very, very important if we are going to move beyond just teachers teaching. Incidentally, one of our colleagues looked at a study done in 1910, and again the predominant mode of instruction wās lēcturing to à làrge group while they sāt and listēned.
 researcher, did a set of intensive case studies on high schools. One was the Bronx High school of Science; and another was a high school in New York City whose name I don't recali but whose focus was the graphic arte. Her conciusion was that the quality of science teaching was reaily outstanding in the high schooi for the graphic arts and the quaility of teaching the humanities was reaily outstanding in the Bronx $\bar{H} \ddagger \bar{g} h$ S̄chool of Schence. But the quality of teaching in the areas where they were spectalized was rather dismal because they did so much more telling and they tried to paok and compact stuff so much.

I'm simply echoing your observation, which is not to say that more cannot be béttēr, but that we've got to be very careful about the mix.

LR: 1 AAPP (Doug Lapp, Science Coordinator, Fairfax County, vírginia): i guess the main distinction of the Fairfax County Schooi District is that it is the ioth iargest schooi district in the Nation and probably has the highest redian income. So in that respect, I think it is useful to look at what are the capabilities of such a district in curriculum development, because it ise oftē $\bar{s} \bar{a} 1 d$ thīs is the province of the Stāē or the province of the counties or the local jurisdictions:

I would like to say that we just don't find it possible, and i don't think we ever wili, to assembie the expertise to develop curriculums of the quality that is required in science and technology and keep those current. A very high standára was established for science curriculums by the curriculum projects in the 1950 's and $1960^{\prime} \mathrm{s}$; and some of them were targeted toward science and engineering specialists. I think we all recognizè thāt. And we are looking for something to follow that up, and it's not thère.

Locāl districts can assume control and maintain control over the curriculum by uising an eclectic approach--by combining elements developed from various projects into things that fit local situations; local capabilities; and facilities. But in no way can they develop curriculums without academic support from universities; et cetera. And we have just not been able to assemble that.

The other thing that I would like to add is I do support very much Dr. Tailey's suggestions of getting industry and Government labs involved in science and mathematics education and support. We have, noticed an increase in
this, what with the clarion calis in the press that our science education $1 \bar{s}$ flagging. And I have had professional associations and Government laboratories (of which there are many in the Washington areã) come to our aid. But when they find out that à scientist who has great intentions would be required to come in and teachi five identical presentations in one day, and possibly take a day to plan that and several days to follow up, their interest wanes. They were thinking maybe of one large presentation which would change the whole face of education for that year.

It's a wonderful idea, and ithink we should support it in every way and provide incentive and recogntion, but it cannot really affect day-today teaching. The most it san probably do is raise the moraie of science teachers to 'be more similar to what you find in Europe among secondary science teachers. That 1ā, they have à great identification with the academic cocience comunity.o.industrial science community.. oand they feel that they are in contact. And that is what $\overline{1} \bar{s} \bar{n} \bar{n} e e^{\prime}$ ed more; perbaps, than anything else:

Also, for $\overline{\mathrm{a}} \overline{\mathrm{s}}$ long $\overline{\mathrm{a}} \overline{\mathrm{s}}$ I can remember, we have had a drain-off of talent. When you had National sqience Foundation institutes for teachers; it tended to funnel them off into other positions the more expert they became. However, there was a time when teaching was improved; and the institutes provided important standards of quaiity in teaching. Many teachers did stay, and they provided a bootstrapping effect on the other teachers.

DR. TALIEY: I am 801 ng to be very interested to hear what Argone has done because I know that the NASA Ames facility, the NASA Lewis facility, and every Army laboratory that I have visited that has been near a population center, have programs in which they not only being students and teachers into the labs but their people go out to schools. I recognize the problem you state; and yet somehow these people seem to be resolving them.

DR. ROBERTS (Linda Roberts, ŪS. Department ō Education): Lāst yeār, I had an opportunity to do a series of case studies of school districtes moving ahead in applications of computer technology in education. And, like you; I was able to see many striking examples of districtes who went into the community and used the resources that were thēe.

My question to you, though, is: What does a comumity, that hā no resources like the Argone National líaboratory, dō? I rāise thāt bēcāuse we have many, many schiol districtes in this country that are primarily in non-high-tech areas.

DR. TALEEY: "High tech" is a relative term Thanks to the 435 congressmeñ, each representing a district, we seem to have spread throughout the Nation Government facilities of varying stripes and levels. I think it has been well brought out that what we are not after 1s to train that 1 percent; but to raise the average understanding of our citizenry. And I suspect that you are going to find that while you do not have an Argonne in every schcol diatrict; you have a Corps of Engineers laboratory or Department of Agricuiture experimental station or something. if you don't, then at least one of those 435 congressmen was not doing his or her job.

DR- SABAR (Naama Sābar, Tei Aviv University, Israel): I really want to expand a íttie bit on what Lee (Shuimañ) and some others have réferred to as the probilems of the new curriculums and the role of the teacher in that sense: $\overline{1}$ think the problems of the new curriculums, so-called, àre not so much in creating them as in implementing them. We really never got to the point where we saw in reality what we had hoped to see. So with this kind of disappointment that has prevalled in the Western world; we observe now a new trend which is called "school-based curiculum". It is not meant for the teachers to rénvent new excēlent curículums; but just meant to be active participants in making learning materialso

Thī ($\bar{s} c h o o \overline{1}-\bar{b} a s e d$ cuirículum) has been tried successfuily in Engiand; in Australia, and even in israei. And the Rand Corporation report about change in staff development came out with very strong recommendations for taking teachers as active partners in curricuium development; mainly in revising, adapting; and changing curricuium for their own needs.

I would therefore encourage the NSF in their new inservice courses to àctivate teachers as equal partners, rāther than imposing what is known already in the curriculum.

SESSION III SCIENCE EDUCATION

RESEARCH IN SCIENCE EDUCATION: REVIEW AND RECOMMENDATIONS

Wayne Welch, Professor of Educational Psychology and Director of the Research and Evaluation Center University of Minnesota

The past decade has been a difficult time for science education. Decilining test scons, shortages of qualified teachers, iow enroilments, reduced confidence in science, and ioss of Federal support are some of the probiems that have piagued the discipline, Science teaching has atruggled to retain its position in the school curriculum. Some have cláaed a national črisis exists (Press, 1982; Opel, 1982; Yagèr èt āl., 1982).

In rēcent monthe, however, a number of activities have occurred that indicate a renewed interest in the field. The budget for science education in the National Science Foundation (NSF) was doubled In fiscal 1983. The National Academy of Sctence (NAS) heid a meeting last fall to consider precollege education fri bcience that was attended by more than 600 business; poitutcai; and educational ieaders: The National Science Board (NSB) hās estabísished a commission on precollege education in mathematices; science, and technoiogy, and professional societies such āe the American Association for the Advancement of Science (AAAS) and the National Science Teachers Association (NSTA) have stepped up their efforts to draw attention to the problems. A number of bilī̄ hāve been introduced in the Congress that are dēsigned to improve our Nation's capacity to improve science teaching.

This renewed interest in science education is supported by the results of the 1981-82 National Assessment of Educational Progress (NAEP) (Helch \& Anderson; 1982). Enroilment iñ traditional science courses hās incrēased, and $\bar{a} \bar{t}$ three age leveis (9-; 13-, and 17-year=olds), the declines in science achievement noted for à decade have leveled off. At age 9; thère was à slight increase.

Because of growing public attention, the National Institute of Education ($\bar{N} I E$) was asked to develop à résearch agenda for science and mathematics education. What rēēearch questions are most pressing? How can we improve science teaching? What do we presentiy know and what should we find out? Thēé questions were posed to me at a meeting with NIE staff and are the basis for the discussion that follows-in essence, a needs assessment of research in science education.
i struggled for some time with two concerns: How can I avoid advocating my own research interests? What determines a needed area of research?

I decided to address the first concern by considering the total domain of science education and reviewing previous work in this context. The second question was more problematic. A need could grow out of a personal interest
area, a discrepancy between a wish and a have, an intriguing question, a National priority, or a combination of these. The needs definition that evolved has three elements: (1) gaps in our knowledge in important areas; (2) high national priority; and, most importantiy, (3) ilimited prior work in promising areas.

I do not think we should cover ground that is well-troddeñ but neither should we chase rainbows. I tried to develop my research. agenda in that uiddyle zone between the known and the unknown.

I use three procedures to conduct Ehis needs assessment. First; I deascribe the domain of sctence education. Second; I examine geveral recent meta-analyses and research revtews in iight of the proposed domain, and, based on the research resuits and the extent of research in aiven area; I Identify those areas that seem most promising for future research. Third; I compare these \bar{a} reas with other assessments of research priorities and recomend five specific research questions.

A SUGGESTED DOMA IN FOR SCIENCE EDUCATION

When considering à topic as broad ā science education; one must outine that topic in some detail in order to speak clearly of it. It is also éssential to define the domain to ensure that important components are not overlooked.

My view of bcience education has been expressed elsewhere; first in an NIE-NARST comititee report (Yager; 1978), and more recentiy in wy work with Project Synthesis (Harms \& Yager, 1981; Welch et ai-, 1981). This view is based on an evaluation model suggested by Stake (1979) and modified for science education. What follows is an extension of that earlier work.

The domain of acfence education can be viewed as comprising three wain components: context, transactions, and outcomes- The contextual component refers to the set of conditions existing prior to the exposure to learning.
 knowledge, science laboratories, and comunity opinion. In terms of a physics metaphor I like to use; context is the potential of the system for accomplishing learning: A school that contān̄̄ a well-equipped science laboratory; a híghis trained téacher, and motivated students seems ifkely to have a greater potential for learning than one that has no laboratory, poor teachers, and disinterested students. Whether this potential is realized depends; in part; on the classioom transactions.

Transactions are the set of activities that expose the student to opportunities to iearn: They are the actual interactions of the students with their teachers; ciassmates; curriculum materiala; the natural worid, and many other things. In terms of the physics metaphor; transactions are the kinetics of the system. Reading the tēst, talking with other students; watching a film ioop, and visiting à $\overline{\mathbf{z}} 00$ are all examples of transactions that would seem to be related (in different ways) to science learning.

Outcomes of the schooling process are the results of transactions occurring in a given context. Outcomes are the work accomplished by the system. An understanding of the theory of evolution is an example of an outcome. So is the skill to read a themomiter or use a pipette. A more negative attitude toward scientific research on the part of the teacher is still another example of an outcome of science education. outcomes are usually measured by changes in student behavior, but teachers; activities, textbooks, and other actors and props in the drama of iearning may be affected as well.

A inst of the key elements of these three componeñ $\bar{s} \bar{s}$ shown iñ Table 1:

iable 1
 Domain of Science Education

qable 2 provides examples illustrating each of the 22 elements. Although I do not claim that this list is exhaustive; it does provide a structure-perhaps a chēck lis̄t--for considering areas needing research.

SYNTHESIS OF RECENT RESEARCH

Tíme and space limitations do not permit a compléte rēview of all science education research. However; several major research syntheses were available; and these were ised $\bar{a} \bar{s}$ the major data sources in my review. The ysarly reviews of reseārch supported by ERIC-SMEAC; several meta-analyses; the NSFsupported stātus stūdes, National Assessment results; and the work of Project Synthesis provided a rich source of information for making a preilminary āsēs̄sment of our current knowledge of actence education. Each of these reviews was examined for conclusions relating to the context, transactions, and outcomes of science teaching. The results of that examination follow.

Table 2

Domain óf Sciencee Education*

Examples of Categories

Context (entry conditions)

- Student Charactertstics (interests; previous experiences, ablities, attitudes)
- Teacher Characteristics (philosophy, preparation, perceptions, personal traits)
- Science (content, processes)
- School cimate (bureaucracy, poilcies, physical appearance, comunity influences)
- Sociezal Imperatives (environmental quality, societal views of science and/or tectinology, health, and well being)
- Home Environments (vocation, family structure and function, physical features, philosophy)
- Curriculum Materials (teatr, laboratory guides; filme
- Science Facilities (ciassroomlāaratory, materialas, budget)
 departmentail)
- Science Education Network (communication groups; professional sociéties, reesearch reports, cooperative efforts)

Trānsactions (interactions)

- Teacher Bēhaviors (procedures followed to promote instruction)
- Student Behaviors (activities of students in the clasaroom)
- Instructional Resource Exposure (enrolifig in science; TV; engaged time)
- Clāşroom Climate (social-paychological learnigg environment)
- External Influences (strikes; budget cuts: space launchings)

Outcomes (results of instruction)

- Student Achievement (test scores, other measures)
- Student Attitudes (student feelings ābout science and science learning)
- Student Skilis (observation, measurement)
- Teacher Change (satisfaction, burn-out, knowledge)
- Scientific Literacy (more knowledgeable about the meaning, lifitations, and value of science)
- Career Choices (science or science teaching)
- Institutional Effects (ioss of status, worale, structure changes)

Source: Mọdified from Yager, 1978.

Context

The relationships between student characteristics and student performance wére investigatēd in an exhaustive meta-analysis conducted by Malone and
 the results from a number of similar studies (Glās̄ and Smith; 1979): Approximately 170 studies were found between 1960 and 1981, that examined the Influence of ability, social-economic status (SES); gender; and race on student outcomes. Student outcome measures included science achievement, science attitudes; and cognitive levels (ég.; Bioom or Piagetian tasks). Both correlation coefficients and effect sizes (differences between experimental and control groups expressed iñ standard deviation units) were used as indicators of relationships. Table 3 presents a portion of the Malone. and Fleming findings.
-
Table 3
Student Characteristics and Outcomes: Mean Correlations

	Student Achievement	Student Attitude	Cognitive Level
General Ability	. 43 (42)*	.15 (13)	. 47 (112)
Language Ability	. 41 (5)	NA (5)	-53(24)
Mathematics Ability	.42 (13)	NA (5)	. 51 (19)
SES (high-low)	. 25 (21)	.03 (13)	. 29 (47)

*Number of studies in parentheses.
Sourcé: Māone añ Fiēin̄̄, 1982.
Measures of ability (e.g., IQ) show consistent and positive relationships with achievement and cognitive level:. Théir relationships with attitudes are much smallor ($\bar{m}=0.15$), but few studies hav́e been done in this area. SES
 uith atideat attitudes.
frist presents the resuits of an analysis conducted using effect sizes as fine rissure of relationshī. These are sindardized diffcrences between two $\overline{\text { : }}$ oups. In éach case; \bar{a} positive effect size favors the first group iisted.

Table t
Student Traits and Outcomes: Mean Effect size

Gender appears to have the weakest relationships with the three performance measures considered, with males generaliy scoring higher than females. The éffect gize for" race is about twice as large as that for gender-except for attitudes; where the relationships are quite low.

Clearly; there are consistent relationships between student characteristics and student outcomes. Further, a great deal of work has been done, to date, in this area. However; the low relationghips between student characteristics and attitudes and the few studies done in rinis area are possible areāe for future research.

Teacher Characteristics

As part of the extensive metananaysis carried out at the University of Colorado (Anderson, 1982), Sweitzer (1982) examined che effectiveness of pregervice and inservice training activities, such as method courses; modeling strategy, and questioning anaiysis; for teachers. Then ūing various teacher outcome criteria as the dependent measures; Sweitzer noted a mean effect size of 0.77 in $15 \overline{3}$ different studies. That is; teachers who receive the training tended to outperform the comparison groups on measures of science content, process; atítude toward science; and desiréd teaching behaviors (e.g.; questioning). This would lead one to beifeve that training does have at least a short=term effect on teacher perfotmance.

A few studfes ($\bar{n}=19$) used subsequént student performance as the criteria for assessing teacher training lipact? but Sweltzer (1982) provided no data on long-term behavior changes for the trained teachers. A mean effect size of 0.44 was observed for these studies; wifich suggests that training teachers may have an eventual impact on students.

By contrast, Druva's (1982) meta-analysis yielded very little relationship between teacher characteristics and their teaching behavior- The mean correlation between various characteristics (ēg.; age; gender; personality; attitures; and measures of effective teaching) was only +0.05 ; perhaps the most surprising result in this series of meta-analyses. Druva (1982) also found iow cōrrelations among hér meāsures of tēacher chāācteris̄tics and student outcomes. Sēveral of thēse rē̄ults are shown in tāble 5.

Table 5.
Teacher Characteristics and Student Outcomes: Mean Correlations

Characteristics	Student í.tcomes	
	Cognitive	Affective
Sex	.04 (4) ${ }^{\text {\% }}$.08 (7)
Age	-13 (7)	.26 (1)
Science Training	.19 (24)	.18 (9)
Experience	.10 (23)	. 12 (11)
Personality	. 01 (144)	$=.02$ (53)
Attitudes	$\frac{.10}{.05} \frac{(6)}{(208)}$	$\frac{.04}{.04} \frac{(11)}{(92)}$

*Namher of studies in parentheses.
Source: Druva; 1982.
Note that previous science training accounts for very little of the variation in student performance. This is contrary to the beliefs held by many scientists and science éducators thā science knowledge is̄ highly rēlated to effective teaching. Oniy 4 percent of the variātion in studeñt learning can be explained by this variable, Furthermore; the unknown influence of age; experfence, and sex ō this variable may further decrease this relationship.

Fō reasons that are not too clear; antecedent teacher characteristics do not appear to have much effect on student performance fn science. This result will surprise and disappoint many peopie; but it is a finding that cannot be ignored.

Science

This category refers to the content; processs; and structure of the scientific enterprise. Research in this category asks questions about the nature of science à it relates to student learning For example; are there characteristícs of physics as an àēa of study that suggests learning styles or methods of presentation différent from those deemed effective in biology or earth science? The Anderson (1982) meta-analysis did not address this issue; and few studies were found in the other research reviews examined for this paper.

Occasionally; teachers or students would be asked their views of science; for example; is it factual or abstract, inductive or deductive (Durkee, 1975)? Cognitive psychologista have examined the way in which people learn concepts; including the concepte of science. However, their approach derives from information theory, not the nature of science. Several tests have been developed to measure understanding of attitudes toward science (Doran et ali, 1974), but I found no research on the nature of science with potential implications for science teaching.

Social Imperātives

The influence that society has on teaching and the effect that ir. cetal expectations have on curriculum development have not been well rejearched in science. Yet these are timely and important issues. Nationalis, idere are frequent reports of varioun citizen groups influencing the inclusion or excluaion of controversial materials in the curriculum: public concern about the decilne in science litēracy-as evidenced by scores on zātionail assess-ments-hā prompted iñ reased citizen invoivement in educational decision= making for many districts:

In addition to the concern of citizens; scientistes and science educators fear that basic tevels of science literacy are not being met. Science interacy is crucial for an informed electorate in the increasingly technological society in which we live. With evidence of reduced enrollments in science classē, there is a concern that future citizens will be even less capable of grasping the essential scientific ramifications of many societal 1ssues. This concern has prompted the inclusion of technol gy and eciencesociety items on the National Assessment of Eduational Progress test in science: in addition; the NSTA recently issued a poiicy statement on the importance of including the social aspects of science in the science curriculum (NSTA, 1982).

Home Environment

Home envircnment has been shown to be significantiy feiated to student performance in a few national and internationai studies; but it is tot an area where many reacarchers have turned their zitention. In the United States, Wolf (1979) reported a correlation of 0.4j between meabures of home and family conditions and science achicvement as measured in the first International Evaluation of Achíevement (IEA) study. Coléman (1966) reported even iarger relationships between home environment variables aṇ measures of verbal ability.

Wolf's study is informative because it compares the relative coutribution of home previous learníg; and schooi variables on student performance. His rēults for three different age groups are showi in Table ó.

Tabie 6
Multiple Regression Resulte for Predictors of Science Achievement

Aḡe Level	Home Learining		Prior Learning			School Variables		
	R	Variance Explained		Added Variance		R	Varian Added	
10-yr-oids	. 42	18	. 43	0		. 52	9	
14-yr-olds	. 45	21	. 49	3	$\underline{\square}$. 55	6	
12th graders	.43	18	. 52	9		. 59	8	

Source: Wolf; 1979.
These results illustrate the influence of the home environment and previous learning science performante. They also suggest that school variables do make a difference even when entered iast in the regression analysis. Butts (1981) reached a similar conciusion in his review of the science educationai research conducted during 1979. Others have notec the importance of home bākground in their secondary anā̄ysis of NAEP dāē (Waiberg ēt al., 1981).

Curriculum Materials

The curriculum to which students are exposed does make a difference in what students learn. The research ifterature is repiete with curriculum studies, and most find that students iearn the content to which they are exposed. In 1979 alone, Butts (1981) found 102 curriculum studies. He concluded that content effects were largè unexplored àt the elementary level: but at the secondary levei, instruction in specific intent increases achievement in that area.
 investigated the effectiveness of secondary-level NSF curricula in comparison to traditional science programe. Their outcome measures consisted of cognitive tests, affective scales; process and analyticai skilis; and creativity. Thè found a mean effect size of 0.37 in favor of the NSF curricula. However, specific areas stressed in these iñovative curicula showed even greater differences. The mean effect size for process skills was 0.61 ; for analyticai skilis; 0.71 ; and for creativity; 0.71.

Weinstefn ét aí. (1982) analyzed 33 siudiē from the United States; Great Britain! and Israel and found in them 151 separate comparisonso The mean effect size was 0.31, with a standard deviation of 0.70. This is in ciose

$$
i^{\circ}
$$

In terms ōf subject areas; biology and physics showed the greatest éfécts. In biology, the mean effect size for achievement was 0.59; for perception, 0.82 , and for process skilis, 0 . 90 . For physics; the achievement éfféct siźe was 0.50 ; perception; $0 . \overline{3}$; and process skilis; 0.53. Eāth science was the only subject area with a negative effét size (-0.07).

Weich (1979) acknowledged that curriculum differences do have an effect; but argued that the magnitude was small; perhaps explaining only 5 percent of the variance. Shymansky's data suggest that the average student in the experimentā c ciriculum would fall at the 64th percentile of the comparison group, a difference of 14 percent.

Several authors raised questions about the extent of curriculum exposure, failure of the curriculum to represent modern science, and the reiative influence of curriculum compared to other context and transactional variables. In spite of these concerns; curriculum effects represents one of our most researched areas and one in which our conclusions seem fairly solid.

Facilities/Equipment

This category is related to the school climate and curricuium materials category; but focuses on the tools available for teaching and learning. Climate is the socio-psychological context of the school; curriculum rēērs to the definition of content to be learned. Facilities and equipment référe tō such things as laboratory equipment, desks; clās̄room architecture; computers; chalk boards, projectors, and the like.

Helgeson et aí. (1977), in their 20-year study of the status of science education, concluded that teachers believe that adequate facilitiē are one of the most important conditions for a good science program. Flexibility of usage is also rated as very important. These conclusions were based on $\bar{s} u r v e \bar{y}$ conducted by a number of researchers. The general tone of the review was concern for the perceived decline in science budgets. In the national survey of sctence practices (Weis̄, 1978); 25 percent of the teachers polled rated the lack of funds for purchasing equipuent and supplies as a serious problem.

Most research conducted in this area has been directed toward the use of the equipment in leaming acience, rather than toward the intrinaic merit of the materials. Fō example; filmed instruction ōr computer-assisted instruction (CAI) is compared to traditional modes of instruction using \bar{s} tudent performancê $\bar{a} \bar{s}$ the criterion. Renner et ale (1978) reported on nine such studies in their review; Mallinson (1977) found eight; studies in i975. In each case; the emphasis was on the use of the tool rather than on the need, development; structure of facilities and equipment Perhaps research is needed to heip science teachers decide what equipment is needed to teach science; how it should be built, and how it should be presented to students: Some potential ateas of study include hand-held calculators, microcomputers,
 them? Why or why not? What are their intended uses?

Goais
Research on the goais and objectives of science education sometimes takes the form of surveys of teachers or science educstion professors. They are given a list of potential goais and asked to rank them. For example; Welch (1977) surveyed 344 science teachers and 167 principais and asked them to identify needed goals. Three major needs surfaced: (1) information processing and decisionmaking skills; (2) basic skills; and (3) development of self-esteem.

More often, leading figures or organizations are asked to identify priorities for the disctpilne- For example, Hurd (1971) identified what he saw as emerging priorities. Some of those stated were: (i) science must be part of the education of every student, (2) science should be taught in a social context, and (3) science education should give top priority to changes brought about by technological developments.

Perhaps the most extensive research effort to date in goals was the work of the Project Synthesis group (Harms and Yager, 1981). A group of 23 leading scifence educators established desired conditions for science teaching using a framework of four goal clusters: personal needs, societal issues, academic preparation, and career education awareness. These desired conditions were then used to examine the current status of science teaching to determine needs. Discrepancies in biological science, physical science, inquiry, élementary science, and science-technology-society were identified and used to develop a series of recommendations for Federai poilcy as weil as for science teachèrs. During the past year, the goals (as portrayed by Próject Synthesis) hāve been used às criterià for identifying the outstanding science programs in thè Uñted Stāēs. A lis̄t of the goalos hāē ālso been distributed widely to science tēachērs through thē National Sciencē reachērē Ās̄ociātion.

Htstorical and philosophical research on goals appears to be unpopular (perhaps unproductive) to researchers; as few studies of this kind were found in the major data sources used in preparing this paper.

Science Curriculum Networks

No research was found that addressed the effectiveness of professional societiēs, coopérātive éffortş, dissemination systems; or scholarly journals in the areà of science education. Annual meetinges, ERIC-SMEAC, The Science Teacher, and meetings like the NIE conference on the mathematics̄/sciencè teacher shortage are seldom researched for improvement or accountability. Some work has been done by Crane (1975) on the Infiuence of the "invisibie coilege" on professional behavior, but not specifícally in science education.

Transactions

Transactions are the kinetics of the learning system. They are the activitiē thāt \bar{s} tudent \bar{s}, teachers̄, and others perforil in the quest for
 examined in turn.

Student Behavior

It is difficuit to separate student behaviors from teacher behaviors because they often occur simultaneousiy That is; a teacher lectures and a student listeñ to a lecture. The distinction I would like to make is that of the initiator. Who decides what activity is to occur? The teacher decides to lecture; bot the student decides to listen.

Surprisingly little research on student-initiated behaviors was found in the ifterature I reviewed. In fact, only one of the four yearly reviews with indexes even had the word "student" ifsted, and that was for a section on student characteristics. Data from the sét of case studiē carried oút by Stake and Easley (1978) are even more surpising. Their extensive index has 290 references to "teachér" (pius another 96 on "teaching"), but onī eight references to student: Apparently this has not been z popular focus for science education researchers.

Some work has been done on how students choose to allocate their time and effort in individuailzed programs (Bowsyer et al.; 1978; Rice \& Iño 1978); hut it is premature to form any general conclusions.

One promising line of research is that deaing with the engaged time \bar{a} student spends on learning;. To a large extent; the student is responsible for this kind of behavior. The research to date is encouraging. The more time a student spends iñ direçt iearning behaviurs; the greater the leaming (Doyie; 1977): Direct Iearning behaviors inclưe such things as task completion; time on task; hpaework; and reading texts. In a sense; one key student behavior is his or her decision to enroll in a sclence course; which ia discussed further in the section titled "Instructional Resource Exposure." Much more remains to be learned; but the application of these principles to science learning seems warranted.

Another set of interesting student behaviors are those that mediate learning (Doyle; 1977). Mediating behaviors are those mental procésses that we presume are necessary for effective learning; but that are not directy related to the learning process. Examples include attending; translating; segmenting; rehearsing, and eiaborating. Although not related specificaliy to science learning; the infiuence of these behaviors in the sctence ciass room seems wort iy of further investigation, especially during iaboratory investigations.

An interesting new line of research on behavior fails into another category of indirect behaviors and grows out of conceptuilizing the ciassroom as an ecological system. Learning is viewed in the context of exchanging performance for grades." The student does things in return for certain rewards--grades perhaps; or in some cases the satisfaction of understanding.

The approach seems somewhat crass but presents en innovative way to view science clās̄rooms: The research to date suggests that successful students search for cues from the teacher on important concepts; imitate desired behavior; and even enifst cohort assistancé other student behaviors important in this approach to the classroom are adjusting to change and
learning to compensate for deficiencies, absenteeism, reading problems; etcSome intriguing applications for the science education researcher seem possible.

A final form of relevant student behaviors are those occuring in informal or out-of=school settings: A few research studies have been conducted on the effectiveness of museums; 2008; field trips; television; and the like. However, it is premature to form generalizations at this time. The growing acceptability of naturaifstic inquiry paradigms might permit a greater understanding of what students do when they attempt to learn science in informal settings.

Teacher Behaviors

The ifterature is crowded with studies of teacher behavior. It is a primary area for research in science teaching and has been addressed in two major meta-analyses (Wise and key; 1982; Willet and Yamashita; 1982).

I classify teacher behaviors in terms of pedagogy, style, and management o Pedagogy refers to the specific instructional strategies and tactics teachers use in the classroom. it includes such things as lecturing; lab work; anis questioning behavior. Style is the manifestation of the teacher's personality int the classroom; and it includes things such as enthusiasm; sensitivity, and expectations. Management is a broad category including general instructional sjstems-CAI; team teaching, and such day-to-day tasks for structuring the learning opportunities as setting rules and modeling behavior.

Wise and obey (1982) provide a nice summary of the effects of teacher techniques: Their results are shown in Table 7. The overall effect size of the various teaching techniques was 0.34 ; one-third of a standard deviation. This means that the average of the treatment group was equivalent to the 63 rd percentile of the comparison group. The impact seems modest except for waittime; and this research involved only four studies: Wise and Okey recognize these moderate effects on student learning but offer the hope that combining strategies might improve the situation. They call for additional research to investigate the possibilities.

Willet and Yamashita (1982) conducted a meta-analysis of research on instruction systems, which they defined as "a general plan for conducting a course over an extended period of time." (p. 1) Examplesinclude CAI, individualized instruction; and mastery learning. They examined research carried out between 1950 and 1980 and found 130 studies that fit their criteria for inclusion. Most were conducted between 1961 and 1974. The results of their analysis are informative and are presented in Table 8.

The overall impact of the various instructional systems was only $\overline{0} . \overline{1} \overline{0}$, Indicating that, on average, an innovative teaching system will be about only one-tenth of a standard deviation better than "traditional" science teaching. There were no effects noted for grade, subject matter, or year of publication: Published results tend to yield higher effect sizes than those appearing in dissertations.

Tablē 7
Teacher Behaviors: Mean Effect Sizes

Source: willett and Yamaskita, 1982:

Lott (1982) conducted à meta-analysis of studes involving the use of advance organizers and inductive versus deductive teaching behāviors. He found àmean éffect size of 0.24 for 22 studiés ūing advance organizers and $0.0 \overline{6}$ for the studies that examined inductive versū deductive teaching behaviors. His results are lower than those found by Wise and okey (1982), but the latter included a broader definition of the categories.

In sumary, the effects due to various teaching strategies are तisappointingly low. They average only 0.22 for the 812 cases used in these three meta-analyses. Here; again, the influence of what the teacher does in the classroom appears minimai. Perhaps a different research focus is needed.

Little work has been done in sclence on teacher style variables and the teacher as manager. Rosenshine and Furst (1971) argue that behaviors such as organization; enthusiasm; and expectaition are key factors in facilitating learning. They belleve that direct teaching strategies have greater impact than indirect ones. Some data reported here tend to support this ciaim in science teaching (see, for example; effects of focusing, learning contracts; and mastery learning). Indirect strategies (e.g., inquiry teaching, self-directed sȳtems, and inductive teaching) seem less successful. The discovery nature of science; however, makes these results unpalatable for many science educators: Interest in induction, inquiry, and discovery learning do not match well with the direct teaching proponents.

Instructional Résource Exposure

This category includes those activities carried out by teachers, students; and others that bring learners in contact with learning opportunities. To some extent; they overlap with the teacher and student behaviors mentioned earlier. However, the emphasis here is on the finteraction of the students with the learning opportunity. Key elements inciude enroiling in science classes, curriculum implementation, minutés of science studied, librā̃y use, watching $T V$, taking field trips and reading science novels.

Research in this area is limited in the context of science learning. Course enroilment data are uneven in quality, although a few studies of the past decade àre beginning to shed some light: Engaged time in science is perceived as decreasing, yet our logic and some research (Wetch et ai., 1981) teilis us that takfing coursés is añ essential ingredient for learning science.

The barriers to and facilitaters of getting children into science coursēs are not well understood. Furtherwore, we are not certaln of the most effective activities to offer once we get them there.

The resuits of the 1982 National Assessment indicate marked changes on topics covered by the national media (Welch èt al., 1983). Items on tést-tube babies, computers, space travel, nuclèar energy; poliution, and others ail showed sharp changes during the past 5 years. Why? What are the impicications of these results for the learning of science? These and other questions remain unanswered.
 too early to forim generalizations. Otie simers note to the hopeful: out-of-school activities are usuajiy rovireceve. They present a refurce
 animal behavior?". Indirect strategies have not been overwhelmingly successful. Further information and undersāanding is needed.

Clās̄aroom Climate

Classroom cinmare is the social-psychoiogical environent in the classioom as perceived by the students. This category views the class ās à social group and presumes that group dynamics is an important factor for learinig. Emphasis is on the sociāl and psychological interactions in the classroom and thèī effect on lēarning.

One measure of the leazning enviroment is the Learning Environment Inventory (IEI) developed in the late 1960's (Fraser et al.; 1982). Considerable research in North America; Ausl ralla; laracl. India; and other countries has shown relationships between the LEI scales and student performance. In many studies, appreciable amounts of variance are explained beyond student entry characteristics such as IQ and pretest scores. Much of the research has teen done in science ciasses.

The work of Johnson ét ài. (ig8i) has also shown relátionships between group activity and student learning. Cooperative learnigg structurees were four $\overline{3}$ more effective than competitive or iñividualized learning structures in neariy all cases reviewed. The mean effect size of 0.78 Indicates the importance of the social environment for learning.

External Intrusions

Often, the classroom īe āfected by evente in the comunity, ie incion; or the world. Examplē of such events inciude budget cuts; space launches; censorstifp, evolution court trials; course requirementa, teacher firings; and strikes: These activitues probabiy influence the átitudes; the career choices; and even the achievement of studente.

Heigeson et a1. (1977) examined these issues in their review of the status of science education. They concluded that such factors do have fufluence in the science licéracy of a nation but did not describe how they operated.

Stake and basley (1978) reported an increased intrusion of Federal and State offices into the conduct of education. As a result, admindstrators are forced to spend more time as business managers and less as educational leaders: Meanwhile, the gap between teachers and administrators widens as each group seeks relief from its respective pressures.

Except for decognizing the influence of external intrusions, regearchers have not spent much time tn this area. The value of future research is not clear to me, but there may be some potential for investigation:

Outcomes

Student Achievement

- Performance, or change in performance, on measures of cognitive ability defines student achievement- A great deal of research has been done following the Intellectual developmeat model of Piaget; and recent reviews of science education research usuaily have a section devoted exciusiveiy to Piagetian studies: in i977; Mailinson reported on 23 such studies He conciuded that (1) the stages postulatē by Płaget seem to be supportē by óther researchers; (2) the logical operations of ciassification; sériation; and so ōn are nō as hierarchically ondered as many have been led to believe; and (3) adolescents may not fit the clas̄ification of "formal operational" to the extent that Plagēt suggēēted.

Many researchers have tried to measure students' abbility to perform varfous plagetian tasks and then relate these scores to course achievement or other measures of student ability: The relationships are strong: This research; which is reviewed in Table 3; shows a mean correlation of 0.47 between general ability and cognitive ievel.

B My familiarity with this research is limited; but I belleve that researchers have identified a new set of sudent variables to measure (e.g.g conservation) and then searched for correlates of the scores (e.g.g age; sex; science success; IQ). By better understanding the nature of student learning, they hope to do a better job of teaching: This approach seems reasonable, büt success to date has been limited. Different children learn different concepts at different times. Stage of divelopment is content specific; forcing researchers to examine the learking of very small bits of information. Generalizability to a whole course seems far off; if attainable at aile

Another set cf researchers have focused on the nature of learning in a field sometimes called "cognitive science.". Some have applied the theories of cognitive science to science education (Klofer and Champagne; 1982). Some of the key tenets of recent cognitive development work include recognition that new learning relies on previous learning; that information is retained through relationships (schema), and that learuers construct understanding rather than mirror what they are told (Resnick, 1982). Here again, the cognitive researchers believe that understanding how children learn will lead to improved instruction.

Other observers of the science education scene are less convinced. stake and Easley (1978) wrote: "Research on the context of instruction rather than rēesearch on the leagrier is more likely to yield ingights into ways of improving the quality of education that is offered. What rēēarch on the iearner tells üs is the vast number of ways people differ; and how greater experfence increases those differences" (pp. 19-26). They belleve that research on the manipulative variables such as administrative or socialpólítical background offē more hope fer school controi:

Other research on student outcomes has concentrated on improving the techniques for measuring student learning. Tests that measured auch things as the nature of science, cognitive preferences; higher ievels of Benjamin Bloom's cognitive taxonomy; ipquify skilis; logical thinking; and a variety ju: science content (e.g.; marine biology; ecology; physics) have been developed and analyzed. Much work exists in this area, but it is difficult to gumarize fts progress: Many.tests have been developed and used to evaluate programa and predict future success in science; and these tests have been the focus of many dissertations. Some reviewers have pointed out the ifintations of many of the measurement techniques (Butts; 1981; Mailinson. 1977); others hāe applauded the improvement of our testing procedures (Sipe and Farmer, 1982): Many student outcomes have been measured and researched- The infiuence of Bloom's taxonomy has been great, and tests are now guperior to those of 25 years ago. Further improvement will probably grow out of entireiy new approaches and procedures for measuring outcomes:

A great deaj of time and effort has gone into the periodic national assessment in science conducted by the National Assessment of Educiationil Progress (NAQP) We have monitored the state of the Nation's underimindiri on four occasions; 1988-69; 1971-72; 1976-77.; ; and 1981-82; Date gathered from this process have been useful to policymakers and researchers and antes continuation.

A similar effort occurred in 1973 with the International Evaluation of Achievement (IEA) study in which science performance was assessed in 19 countries: Another international assessment will take place in 1983 in meariy 40 countries.

Research on the influence of contextual and transaction variables we reviewed earlier: Measures of student outcomes were used as criterla of effectiveness. Much of the research on student outcomes occurs this may. usphasis is on the influence of the independent variable rather than on the mature of the outcomes measured.

The most extensive work on outcomes in science. emerged inom Project Synthesis (Hams and Yager, 1981). Desired atudent outcomes were proposed for five groups - biology, physicai science, inquiry, elementary science; and science-society-technology interactions. foidance on the ectual tatue af student outcomes was examined in light of the destred buter with discrepancies used to identify future needs cer metence teachins. The work which represents a milestone for research on outcomes of science tatehins hat been used to help identify exemplary science progiamela, this; country

Student At titudes

Work in the development and measurement of student attitudes is not an advanced as that in the cognitive domain; although there is a great deal of current activity. In fact; Ormerod and Duckworth (1975) covered about 500 attitude studies in their review. a number of attitude scales heve been developed and used in various studies; but some reviewari bave meriouely questioned their-quality (Gardner; 1975). Although nomé deveropmentín psychologista have explored the affective, doman (Rest, 1979), not many bā examined attitudes in a science context. Theoretical devaiopment is linited-

Attitude $\begin{gathered}\text { have been used as criteria for research on context and } \\ \text { con }\end{gathered}$ transaction components; and they were facluded in the last two National Assessments: The first iEA assessment included attitude scālēs, but mañ did not meet acceptabie levels of rellability and were dropped. Oniy four were eventualiy analyzed. The 1983-84 IEA atudy will also try to measure attitude outcomes, but the nature of the scalēs hās not yet been determined.

The Profect Synthesis team specified a number of desired attitude outcomes, and each of the five focus groups (biology; fnquiry, éte.) recogized the importance of affective outcomes. Each of the research reviews contained section̄ on the developwent and need for good attitude measur' 18 procedures. Most; however, called for continued development in the àrea. A need was seen for clearer understanding of the roie attitudes play in understanding science; Influencing future behavior; and āfecting füture career choices in science and technoiogy.

Benjamin Bioom published his cognitive taxonony in the mid-1950's. James Krathwohi foilowed with a taxonomy for the affective domain 8 years later- In my opińon, this 8 -year lag partiaily explains the current lag in our ability to effectiveiy measure attitude outcomes.

Student Skills

Skills in sciencē denote the techniques students learn in science classrooms (e.g., reading meters, taking measurements; conducting experimentē), as well as those behaviors exhibited by students after they iēure school (e.g., brushing teeth, voting, building nature reserves).

Some work has been done on methods for measuring process skills; especiaily at the lower grades. Observation, classification, and catégorization tests bave been developed and used, but they have ylelded inconciusive results (Mallinsun, 1977): With directed efforts, students have
 content knowledge. In other eases; no significant gains were detected.

Some hāve attempted to measure laboratory performance skills and have developed new techniques (Buttis; 1981). However, most national testing programs do not include "practical" tests, and there is mixed opinion on the vālue of such approaches g iven their high cost. The limited number of studies preclude generailzations.

The third part of the Bloom-Krathwohi effort was the paychomotor domain, for which they intended to develop hierarchical taxonomy of objectives. Their failure to accomplish this task characterizes the situation in science teachins: The outcomes are considered impnrtant, but the barriers to effective development are formidable. Some peoplé are attempting to move us forward in isolated studies, but no strong interēst is ēvident $\overline{\mathrm{a}} \mathrm{A}$ present:

Teacher Change

Teachers are often involved in the transactions that occur during the learning of science. It seems reasonable to expect that teachers change as a result of those expcriences. They may learn more science, deveiop negative
attitudes; or even become $\overline{s o}$ frustrated they leave teaching. We know from the Sweitzer (1982) atudy that teachers change as a result or training, but we know very little about how (indeed, whether) teachers change as a result of teaching. Teacher burn-out and aging are examples of how teachers change; but I found no studies of science teachers that addressed these issues. This appeari to be an area where iftrie research has occurred.

Some teachers have left science teaching; thereby contributing to the shortage. But the reasons appear to reflect economis conditions more than the Impact of science teaching. A few surveys proclaimed that there is a severe shortage of science and mathematics teachers in the Uuited States (Guthrle and Zusman, 1982) and suggest budget cuts, problem atudents, and, most important, higher salaries in the private sector as reasoms for the shortage. But these are speculations, not research findings.

Mós ilkeif, studies on teacher supply and demand; selection, and retention will be done by general teacher educators or administrators; rather than by acience educātors. However; the curfrent shortage of quailfied (whatever that means) science teachers may attract attention from the science teaching coumunity: This issue is discussed further in the section on "Career Choides" below.

Sçentific Literacy

A schentifically literate populace is an oft-atated soal for science teaching. [iteracy gerereliy means that set of cognitive, affective, and behavioral outcomes taeded for a citizan to live in our technologically orfented worlć. Research in this area has taken two paths. Some have triec to define, through research; the essential components of ycience ifteracy: Others (NAEP) have meabured the components of interacy, which were discussed in the preceding three sections.

Sēeral researchers heve assessed the requirements for science literacy as implied by the mass media (Ayeira; 1980), while others have attempted to measure the literacy of sefence teachers (Ogunniyi and Pelia, 1980) or aduits (Miller, 1981). In many instances, litaracy 1s used byonymousiy witis knowledge a'out the nature of science. Others define it as the finowledge and attitude towird the process and products of science. Because litexscy has multiple meanings ano is a common goai of bé ence teacht-n", it cértāinly qualifies for further study. The payof: oi guch worix le not clear; however; because of our ilmited prior experience in the àre..:

Sareer Choices

One outcome of scierce teachtug is à studenc's decision to puizue a career in acience or science teaching. Factors influeñ.ing carcer choices have been \bar{s} tudind, sind the causes for underrepresentain of women and minorities in sciente careers have been eran ned, with conalderable interest.

Sipe and Farmer (1932) report that 12 percent of all ntudies reported in 1977-80 dealt with the career developmen. of scientiats and science teachera. ini fint=1guing stüdy by Lagnamin :1980 uses an approach capable of broader
implementation. Lagemann foilowed 90 teachers trained in science and found that those who left teaching were mostly female and had weaker science backgrounds than those who stayed in teaching. The rēasons cited for lē̄̄ing teachíng were large classes, nonteaching school duties, and lack of student interest. Those who prepared for teaching buc were not hired were younger, had lower SAT scores in mathematics and scieuse, had higher GPA's, and declared an interest in teaching later in undergraduate programs.
 teristics of ma? ? ind female teachers. Apparenty, the career decisions for men and women wers lased on different factors.

Unfortunately, no synthesizing studies of career choices were found, but I béteve that addítional studies of teacher and scientist sēection, retention, and attrition would be beneficial. The implications for preservice and inservić : sining, for recruitment, and for resolving shortages (or surpluses; ispear great.

Institutional Effects

Are schools and other institutions changed as a resuit of science instruction? If so; in what ways? As science programs are cut back or dropped from the curifculum; what is the effect on the school? How has the NSF changed since the scienje éducation budget was cut from $\$ 100$ million to $\$ 15$ mililon? If departments ō sciencé téching we. (and are) cut from colleges and universities, what changes in tre intitt ion can be seen? Conversely; if programs are àdē to our schools; coliéges; and informal science centers (ég.; zōs; museums), how are these instituitions goint to charge?

I found very iftil that addressec these questions. The stake and Easley (1978) čase $\bar{q} c u d i e \bar{s}$ examined the inifuence of the community on the schools; but not the influence of the schools on tire community This was true also of the Helgeson report (1977). Mallinson's ievtew (1977) inciuded a number of
 mainstreaning; and desegregation: But aparently no research dealt with changes in the schooi resuitin̄ from speriel science programe for the bilingual; the handicapped, or minorities. Perhaps it is unreāisécic to expect much institutional change ao an outcome of science instruction:

SOME CONCLUSIUNTS

This comprehensive anaiysis enables me to sketch a picture of our current knowlenge of science teaching. To be sure, cice sketch will be hazy. None theless, a broar view of the discipitne helps identify gaps in our knowlage; promising ilnes for future research; and areas of success..

My synthesis of recen : research is sumarized in Table 9: Tie quantity of re search for each element of the dinain is estimated in the second column. \bar{A} S-point rating of very muc!, much; some, little, very ilttie was used. our current knowledge of each tiement is estimated in the third column, again using a 5-point scale from very sifght to very strong in some cases (e.g., teacher charactéristics), two aspects of the eiement are reported bercuse 0. different conciusions. When avallable; weta-aialysis res its are ronorted in 'the tāble às meā correlations or effect sizes.

TABLE 9
Sumary of Research Synthesis

Element	Research Amount	Frtent of known Impact/Infiuencee	Estimáted Future Potential

Context

Student Characteriatics	Very much	Moderate-achie-rement(40\%)* Silght-attitudes (.10)*	Low-achievement High-attitude
Teacher Characteristics	Very much	$\text { Strong training }(.77) * *$	
		$\begin{gathered} \text { Very slight-student } \\ \text { outcomes }(.05) \star \end{gathered}$	Low
Science	Very littie	Siight	Uniknown
School Climate	Some	Moderate	H1gh
Social Imperacives	Very ifttie	Very slight	Unknown
Home Environment	班tie	Modprate (.43)*	High
Curriculum Materiajs	Very much	Nustejte (.37)**	Medium
Facilities/Equipment	S 3 me	S11ght	Unknown
Goals $\quad \cdots$	Lit:tle	Very slight	Little
Science Education Networks	None	None	Unknown

Tramsactions

Studea Behaviors
Teacher Behaviors
Instructional Resource Exposure
Claseroom Climate
External intrusions
Very ifttle
Very much
Líttie
Some
Very little

Ctrong
Fígh
Síght (.22) E Eittle
Strcng in mathematics (.70)* High
S「rong (.78)** Kigh
Yijkiowa Unknown

Outcomes

The fourth column represents my estimate of the impact potentsil for future research in each area. High ratings appear for categories indicating gaps in our knowledge (student behaviors); high potential areas where preíminary work has been encourā̄ing (clas̄room climate); or high priority; due to pressure to solve a problem (career choices): Low rated elements are those already heavily researched with either discouraging results (teacher behaviors) or ambiguous or uncertain effects (student characteristics). Other elements have not been researched enous. a istinate thetr fapact potential (changes in institutions):

The key determincnts of the most promising elements are a moderate amount of work to date and evidence of impaci thus fa:. Seven elements were identified as the most promising areas for needed research. They were: school climate; home environment; student behaviors, resource exposure; career choices; student attitudes; and classroom climate.

Two context vainatiē, three transactional elexeats; and two outcome elements make up my preliminary 1ist. The main emphasis is on h ome; school; and classioom environmental factors; student contact with learning opportunitiēs, and career decisionmaking. Noticeably absent from the list is furthèr study of teachers and reaching behaviors; something that surprised sven me: Except for the infiuence of teacher traloing programs on terthers; the extensive research on teachers has not yielderi prouising results. The mean correlation of teacher characteristics with teacher behavior was onjy $0: 05$ Behaviors had a mean effect size ot only 0.22 when student outcomes were the effect criteria. What students co and the context in which they do it appear more promising than aditinnal investigations of what teachio do.

Other Needs Assessments

The last stef in this needs a. sessment process is to conpare the preceding conclusions with thusc derived from ō̄her assessments of resézrch priorities. Five orich studies have been conducté in recent yeār̄. A brief description óf each follows:

In 197̄, a comittee bf seven science educators met to discuss needed research in science education undér the co-sponsorship of the Nationai As sociation for Research in Science \bar{T}. irig (NARST) añ the National
 and chaired by Fletcher Watson of Harvard iriversity. Eight recommendations were proposed based upon the collective judgment of the committce (Yāgèr, 197%;). The research priority areas encompassed by these recomendations are shown in Table 10.

The comirtẹ roport was "... eep: ed" by the NARST Executive Comitée bi-: it never gave $\overline{1} \mathrm{~s}$ formal endoraement. The fate of the report at Nit is unknown to me. Becacse of continuing interest by the NARST Executive Comittee in the $\overline{\text { r search priority issue; a group at the University of Georgia }}$ was empowered to coiry out a Delphi study of research needs among . NARST members. Thirtȳfires s̄tātements (later reduced t̄ 31) were ranked by 27 percent of the 780 NARSi memrars The tō $1 ;$ priōrity research sreas are shown 1n Táble 10 (Butts $=\mathrm{c}$ al.

Tabie 10
Summary of Research Priorities

Context

Student Characteristics
Tēachēr Characteristics
Science
School Climate
Sociāl Imperātivē
Home Environment
Curriculue Materfai
Facilities, Equipment
Goais
Science Eucacion Networks

Transactions

Student Behaviors	X					
T-acher Behaviors		X	X	X	X	\bar{X}
Inguructional Resource Exnosure	X	X		X		\mathbf{X}
Cifisa room Climate	$\bar{\chi}$	X				
Frtarnal Intrusions						

Outcomes

Student Achievement				$\bar{\chi}$	X		X	X
Student Átitudes	$\overline{\mathrm{X}}$		$\overline{\mathbf{x}}$	X	X			X
Student Skiliss						\geqslant		
Teachèr Change								
Scientific titeracy			X				X	
Cáreèr Choicees	i				X			
Insetitutional Change								

84
88
in 1978, a group headed by Russeli Yeany and supported by the NARST Résearch Committee distributed a set of research topics to a sainple of secondary school personnel. The group comprised àbout 50 percent teachèrse , but the total sample sizè wās not repocted (NARST Newēlèttēr, 1979). A total
 prēēented in tāblē 10.

In 1978 , representatives from the science education programs at 28 colleges and universities were asked what they perceived to be the major prosiems in science education: They were aiso asked to identify soiutions to these problems (Yager ét ai.: 1982). Five of the solutions addressed needed research topics, while another three focused on ways to carry out reses-rh more effectively. The five topical areas are indicated in Table 10.

The final survey reported in she intērature was conducted-in 1979 by Abraham et āl. (1982). All members of NARST were surveyed and asked to list $\ddagger i v e$ most-needed areas of research and rank them in prioritjorder: one hundred and one $p t s o n s$ (13 percent) from the membership responded. overail rankings were calculated using frequency of nomination and ranking. The top 11 rankings re ifsted in Table 10. Priority rank number 6 was on the use of research; rather than a research focus, and is not inciuded in the table.

Each of tife preceding assessments was examined in light of the domanin described in this report. Because different classification schemes were used in the various studies, some judgment was necessāy in trangéring priority eiements to a common domain. For example, three different pxiorities in the Butts et al. survey were listed under the category "teaching behaviors" because they all deale with forme of classroom instruction.

Séréral conclusions are apparent from an examination of Table 10. First, an analysis of research needs based in the extant and impact of prior research ylelds different prioritios than those gataed through survey techniques. Only the elements of student attitudes and instructional resource exposure were included in the present study and fin the majority of the other studies. Berause of the overlap, it see. lear these two areas should become the focus of furure efforts.

Second, survej needs assessment concentrates heavily ôn teachirs, surísulum, and student cognitive development. This is not too surprising giveni that the samey respondents were predominantly teacher educators or teachers. Tese elewints were not given high priority in my analysis because a great deal of vork has aiready been dose and the research to date has not been very promising.

Third, envi ronnentel influences (e.g.; bome, school, and claseroom) are virtually ignored in the surveys as $n=c \operatorname{con}$ areas for research: Yet the resea :ch synthes is indicated quite promising effects for the iimited work that has been done.

Fourth, career choices in scieuce and science teachins were not ranked igh in most of the surveys eithough teacher shortage concerns have grown rapidiy in the past several years. Perhape the datas of the surveys (1976-79) account for this, foz in the late 197 se the was a great ceal of rhetoric about teacher sucplus.

Finally, four elements of the sctence zducation domain were not ranked highly in any of the studies; they were student skill outcomes, changes in teachers as a result of che teaching process, institutional change; and externai intrusions.

The failure of the sūivay to include research on the kinds of behaviors students extibit during the learntug process is not surprising given the paucity of prior research in this area: However; if one thinks of the students instead of the teachers as the primary actors in the learaing process; then the study of appropriate behaviors (e. $\overline{\mathrm{g}}$; ; engaged time) seems highly desirable. -

Résearch Rezommendations

Based upon the needs asgessment described above; and in spite of some atradictions with other priority studies. I would propose the following Ésearch questions es those most likely to help ūs take full advantage of renewed pubilc iñerest in science education. I believe answers to these questions offer the nost hope, at this time; for improving the teaching and iearning of science.

- In whot ways and to what extent do the environmental conditi of of the home, Bahool, and classroom influence science learning? Th: search for teacher and teaching effects on learning has not been fruitful. Other factors need to be explored, and environmental factors appear prowising. The kind of research carried out by Col wnan, Jen iks, $h_{\text {tilberg, and others should be applied to science }}$ leariag so that we may identify the environental factors that can ke manipulated to enhance learning. Increased understanding of the
 presoure, family socouragement; peer interact:on; and ciass sizē; woule have tremendour policy implications for science instruction.
- How can student attitutes be measured rore pefectively and what factors determing these qritudes? Attitudes sre important outcomes of science instriction and protably mediate learning, and future
 end we do not know wiat factors enhance or stifle de.sixed attitude

- What are fie barriers fo and racilitatorg forproviding students with the necessaty exposure to insiructiouti reqoujeces Tis question is based on the assumption that \bar{s} judents need to $b=$ exposed to science iearning opportunities by exioling in courses o participatins ia out-of-school activities. Science enroivents are low, and little is known about procedure: for changing this. Furthemore, cir understanding of tnforwal science learning opportunicies is mintmai. To improve science teaining; we need more students participaing in more science learniup activitien. Research aimed at discovesing ways to do this seems assential. Without studentes in ciasses, the best fastruction in the world is for naught.
- What gpecific behaviors of students in classrooms are necessary for erfective science learning? Past research has shown strong relationships between what student (not teachers) do and what they learn. Learning occurs in the learner because of behaviors the student exhibits (égo, engaged time; attending; homework). Research on science instruction from the learner's perspective offers a . promising ifne of investigation. littie is presenty known and not much has been done except in the area of cognitive development. We. \bar{n} and the necessary behaviors to enhance that leāning.

What determines the science career choicer of giudents and teachers and how cān thēse decigions bé influenced? Conceris about teacher \bar{s} hortāgē, science enrollments; the production of scientists; and general science ilteracy are ali related to the increasing tendency of people to choose not to continue in science. Interest in and enthusiasm for science and its roles in a technologicainy oriented society have diminished in the past decade. Rēearch is needed on the underiying causes of and ways to reverse the trend.

REFERENCES

 research in science education: A survey - Joinnal for Research in Science Tēaching, 1982, 19(8); 697-704-

Anderson, R-D. A meta analysis of major science education questions. Paper presentéd at the 1982 annual meeting of the National Association for Réséarch in S̄̄̄ence Teaching; Lake Geneva, Wisconsiñ, April 1982.

Ayers; J.B. Analysis of the science conteñ of the eventag television news. School Science ānd Mathematics; 1980; 80(2) 109-113.

Bowyer; J.; et al. A free-choice environment: Learning without instruction. Sctence Education; 1978; 62(1); 95-107.

Butts; D.; et al. Prioritfes for research in science education: A deiphí study. Journal of Regeaten in Science Teaching; 1978; 1.5(2), 109-114.
 Education, 1981, $65(4)$.
 ŪंS. Government Priñing office, 1965.

Coleman, J.A. Methods and res its in the icA studfes of effects of school on leárínģ Review of Educational Resérch; 1975; 45(3); 335-386.
 communities. Chicago: University of Chicago Press; 1975.
 meāauring ${ }^{\prime}$ nature of science" objectives. Science iducāion, 1974, 58(3); - 321-329.

Doylé W: laradigms for research on teacher effectiveness. In E:S: Shulman
 Peacock Públis̄hérs, Inc.; 1977.

Drūā, C.A. Science meta-analysis; Teacher riaracteristics by teacher behavior and student outcomes. Paper presented at the 1982 annual meeting of the National Association for Research in Science Teaching, Lake Geneva, Wisconein; April 1982.

Durkee; G.P. An inventury of views on the rature of science among collēge scfonce faculty. Disseriation Abstracts International, 2975, 36(4); 2121-A.

Frasex, H.J. Anderson, G.J., \& Wāberg, HoJ. Assessuent of iearning environ= Fents maciná for learning environment invenicory (LEI) and my ciass Inventoty (MCI): Thirc Versioñ vestern ^ustraifan Institute of Techno?

Gāroner ; P.L. Attitudès to sciēnce: A rēviēw. Studiēs in Sciēnce Educātion, 1975, 2, 1-41.

Glass; G.V., \& Smith; M.L. Mera-analysis of reseat h on class size and a.tlevement Eduratinal Evaluation and Polic Analysis; 1979; i(1); 2-16.
 \therefore lence: Phi Deita Kappañ; 1982 (Sept:); 29 :

Harms; N.C.; \& Yager; R.E. What research says to the science teacher. (Vol. III) Washington; D.C.: National Science Teachers Association, 1981.

Helgeson, $\bar{S} . \bar{L} ., \bar{B}$ osser, $\bar{P} . \bar{E} ., \overline{\&}$ Howe, $\bar{R} . \bar{W} . \quad$ The status of pre-college science, mathematics and social science education: 1955-1975, Volume I: Science education. Washington, D.C.: U.S. Government Printing Office, 1977.

Hurd, P.D. Research in science education: Planning for the future journaí of Research fn Science Training; 1971; 8(3); 143-249.

Johnson; D.W.; Maruyama; G.; Johnson; R.; Nelson; D.; \& Skon; L. Effects of cooverative; competitive, and individualistic goal structures on achievement: A meta-analysis. - Psychological Bulietin, 1981, 89(1), $4 \overline{7}-6 \overline{2}$ -

Klopfer, L.E.; \& Champagne, A.B. Research relevant to science education: Unpubblished paper. Pittsburgh: Learining Research and Development Center; 1982.

Lagemann; R.C. An analysis of backgrounds and careers of student teachers of science fater graduation from tic University of North Carolina at Chapel Hili (The Univeraity of North aroilna at pel Hili.; 1979). Dissertation Ábstracts internacior 1. 1980, \therefore (8), 4511-A.

亡ote, G.W. The effect of variations in : ie nature and structure of content upon student outcomes in science edurātion. Páper présented át the 1.982 annuā meeting of the Natiojin Associatioñ for Research in Science réching, Lake Gēneva, Wisconsiñ, April 1982:
 supplement
 and student perf̄rmance as viewed by meta-analyeis rēēeārch. Pāpér presented at the 1982 annual meeting of the detionar sisociation for Research in Science Teaching, Lake Geneva, Wisconsiñ; Apill 1982:

Millér, J. \bar{D}. The scientific literacy of the spurnik genera ín presented at the 1981 annual meeting of the American Educaticial Research Association, Los Angeles; 1981.

National Ássuciation for Rēsearch in Science Teaching. Newsietter; íg79, 21(3); 2-3.

Nat́onal Science Teacnerō Association. Science-technology-society; Sciencé education for the 1980's. Washington, D.G.: 1982.

VF; laws and theories heid by Krara state science tēachers: Scieace Edrcation; 1980; 64(5); 591-599.
Ormerod, M.D., $\dot{\text { Duckworth; }}$ D Pupils' attitudes co science: A review of reseā̄ch. Wiñsoñ; Berks; SL4 1QS: NFER by Humanities Press; Inc. Atlantic Highlands; New Jersey: Hillary House-Fernhill House; 1975, ERIC Document Reproduction Service No. ED No. 118372.

Opel; J.R. Education; science, and mational economie competítiveness. Science, 1982 (Sept.), 217. 1116-1117.

Press, F. The fate of school sciencé Science; 1982 (June), 216; 1055.
Renner; Jow, \& Abraham; M.R. A summary of research in science education 1976. A supplement to Science Education, 1978; 62.

Resnick, L.B. A new concept of marhematics and science learning. paper presented at the National Convocation on Pre-Cdilege Education in Mathematics and Science, National Academy of Sciences and Mationà Academy of Fingineering, May 1982.
 Minnesota Press; :979.

Rosenshine; B.; \& Furst; No Research on teacher piatuance císeria. In B.O. Smith (Ed.); Research in teacher edicition: a sympotum- Englawood Cilfés; New Jersey: Prentice-Hall; 197!̣.
 currioula on student performance. Paper presented it the 1982 annual meeting of the National Astociation for Rebearch ir Scs ancs Teaching, Lake Gianeva; Wisconsin; April 1982.

Sípe; $\overline{\mathrm{B}}, \mathrm{C}, \boldsymbol{f}$ Farmer; W.A. A sumpit of research sin science education 1880.. Sn!
 Eecord; 1967; 68; :123-540.

Stake; R.E., \& Easiey, T.A. fesign, overyics and geniral findings, Voiume if. Washington, D.C.: US: Government Frinting office, 1978. ERIC Document Reproduction Service No. E. 118 37\%。

Sweitzer, G.L. A meta-analysis of research on pre-service and in-service. science teacher education practices designed to produce outcomes assoctated with inquiry strategy: Paper presented at the 1982 annual meeting of the National Association for Research in Science Teaching, Lake Geneva; Wisconsin; April 1982.
 Probing a model of educational productivity in science with national āssessment samples of early adolescents. Américā Educational Research Journal, 1981, 18(2), 233-249.
Weinstein, T., Boulanger, F.D., \& Waiberg, H.J. Science curriculum effects in high school: A quantitative synthesis. Journal of Rēeāarch in Science Teaching, 1982, 19(6), 51i-522.
Welss; f.R. Report of the 1977 national survey of science, mathematics; and social studies education. Washington, D.C.: U.S. Government Printing Office; 1978.
Welch; W.W. The needs of science education as perceived by principals and teachers. Paper presented at the annual meetins of Association for the Education of Teachers of Science (AETS), Cincinnati, Ohio, Märch 1977.

Welch, W.W. Twenty years éf science curriculum development: A look back. In $\overline{\mathrm{D}}$. Berilner (Ed.), Review $\overline{\mathrm{of}}$ research in, Educātion, 7 . Washington, D.C.: American Educational Research Association, 1979.
Weich, W.W., Alkenhead, G.S., Klopfer, L.E.; \& Robingon; J.T. The role of inquiry in science education: Analysis and recomendations: Science Education, 1981, 65(1), 33-50:
Wel.ct, W. W., Anderson; R.E., \& Harris, \dot{L}. Méthodological considerations in ưhe dévélopment of irdicators of achfevement in the nàtional assessment data. Journai of Educatَonal Measurement, 1982, in prē̄̄̄.
Welch; W.W-; Lawrenz; \bar{F}. Characteristics of male and female science teachers: Journal of Research in Science Teaching, 1982; 19(7); 587-594.
Welch, W. W., \& Anderson, R.E. Searching for images of bctence - the 1981-82 asjessment in sclence. Paper presented at the 1982 meeting of the

 Minneapolis, Minnescra: University of Minnesotā, 1983.
 in seience. Paper presented at the 1982 annual meeting of the National Association. for Research in Science Teaching, Lake Geneva; Wisconsin; Fpril 1982.
 teaching strategies on achlevement. Paper presented at the 1982 annual meeting of the National Association for Research in Science Teaching; lāke. Geneya; Wisconeiñ, April 1982.

Woif, R-M- Achfevement in the Vaited States. In H.J. Walberg (Ed.), Educational environments and effects. Berkeley; Califoraia: McCutcheoñ, 1979.

Yager, R.E. Priorlties for research in science education: A study comittee - report. Journal of Researchin Seience Teaching; 1978, 25(2), 99-197.
 cuirent criscs in the discipline of science education- Joumal of Research in Science Teaching, 1982; 19(5); 377-395.

Jiu Conant, when he retired from Harvard, said that there is no point in worrying about the people who become scientiste. They are so smart that they take it $\bar{a} w a \bar{y}$ from you even if you cannot give it to them:

I really come with añ apology from the rēēarch communty of the unítéd States. That is my communty. I am a rēēarch scientist, and ionout and do buck-hustifng and do some research occasionally. In comparison to the communty in Eastern Europe-the Soviets-we in the research communty have shown by our behavior an extraordināry lack of concerinot only for the whole process by which we generāe our own kind but; much worse; for the Nation.

Yestērday, we were treated in the National Academy of Sciences to a perfect displāy of this. The oniy question was: "What money do \bar{f} get?" Not "Is the national technology posture of the United States in a devastated condition?" But; "How is my budget increasing? What does the budget figure look ilke for my subfield?" So we are really part of the problem and not the solution.

However; I do some research in this fieid; as it so happens: My research in the science teaching business is concerned with the importation of science manpower to the United States. will pubilsh shortiy a study to show that we have abstracted from the rest of the world the equivalent in contained technical training of about $\$ 980$ billion between 1945 and 1983; or 1981; whatever the figure is.

In science teaching, who is our target? This morning you heard that approximateiy i percent of the United States population is involved in science and engineering- We draw that percentage, as (Wilson) Talley said, frou about 2 percent of the popularion. The 59 percent. onre we aiming at these people or are we aiming at the $\overline{1} \overline{p e r c e n t . ~ i n ~ t h e ~ n e w ~ m a t h e m a t i c s ~ a n d ~ s c i e n c e ~ t e a c h i n g ~}$ emphasis?

In a technological democracy, the science research community thought they should erect a flagpole in the uidst of the desert of culture: Here are our scientists; these are the only true citizens; and we should provide a few extras just in case we want some backup. This was the post-Sputnik approach to solving the problem; which was make better scientists."

This ís not the right goal for us now I believe that we should now go after the pyramid model; which is what every other Nation does o If you give. some science to everybody-a iittie more to this group, a iftile more to that group you will have from the pubilc, from the school boards, the money. We hāve to motivate the public. We have to do this kind of pyramidal basing of the motivation of students; of thelr parents; of the teachers, of the

Congress, and so on- And I suggest that in the medin of this, we would have a much more stabje, democratic situation where ac informed population would make more rational judgments.

Wē should āim the nēw mathematics and science at 99 rércent of the population: This is a reverse of the Bible theory don't 30 after the lost sheep; just worry about your major flock.

What content can possibly improve? Let me suggist that there is something here, and it is a critical element of my argument. Wat content can improve a lifelong motivation for jearning about science and eng: র্ríng it is nōt chough to give it to them just for \bar{a} fēw years.

Can we motivate people in those learaing yeats? Ind we cañ I am saying that the answer is science technology; and society- This; i ciaim; is the core of technoiogicai interacy: Now; here is my intile moteo for che day: Technology related to life is technology; science; and mathematics remembered for lifé. If you do not manage it in those scîoci yearis; we will make illiterate citizens.

What I think was said this morning was that we should go from intuitiou to appifed science to abstraction. Most of the people do it that way. 1 belleve we should go from technology to applied science to abstract science. And in all our curriculum; we should reverse what we do-giving abstract principles. It is all very well but it simply does not work.
 technology, and society? I beileve íc is a perfect example of what was referred to ss a mega-trend. There is no NSF program, there is so oig deal, but all across the thousands of university campuses there has started on every single campus something in STS. There are coursē̄ and curricula. MIT has a college and all kinds of programs: There is already a kind of intellectual fement, a democratic intellectual ferment; ail across the land. STS gives us a starting base.

Lét $\overline{m e}$ quote for you the National Science Tēachers Associātion (NSTA) policy statement. At the end it says:

We believe that a minimum of \bar{s} percent of science instruction shoulá be devoted to scłencérélated sociétal issues: in the $\overline{\mathrm{m}} \overline{\mathrm{d}} \overline{\mathrm{d}} \mathrm{l} \bar{e}$ of the Junior year there should be $\overline{1} \overline{5}$ percent; in the senior year 20 percent.

This is not an idiosyncratic, self-serving view of the STS commuity- There are no tenure positions: This is really saying that this is something which ought to be national. And it is the NSTA saying this. it is their position.

If someone asks "What do you mean by STS?"-the easiest way to explain is to show them how to study science through "mineral resources;" "population and health;" "food;" and "dental care." It ls that kind of stuff to which you bring in science. It is not just saying: "I'm going to give you a ifttie bit of stuff."

Let me make this point áoux modern glue. How can such a little subject make à diffèrence? You go to the dime store and buy yourseif a kit--those kits where you put the cars together-and outside the kit it says; "Giue not provided:" What happens in our educātion $1 \bar{s}$ that we get all these chunks and no glue is provided, so you carry around thése parts. I am saying to ycu that STS, if we design it right, can be the glue which makes the thing come together; a synthesis in a technological world of what we have and what we need.

On the new technology, i aiso have a word: We should not negiec tix fact that technology does not equal the computer. There are many other technologies. Long before we get to the computer, you had better worry about the fact that the print materials are going out of style. There are not going to be añ science textbooks. I had a publisherrin my office yesterday say,-"We are not golng to publish āny more science education materials." You say; "Who are you going to publish for? What aree ybu going to do about prigt?"

In the STS field we have designed, with NSF support, new systems of free distribution, onsite reproduction. Print technologies are revolutionizing the process of distribution of matertals. Not a word is being said. Evéryiody parrots that computer nonsense. I am not against computers. We are in that game. But video has not been anywhere near accurately used. I suggest that we appropriately use the new technologies.

So I bring words of hope and comfort and probably despair from one of those outsiders.

Comment: Dr. Lee Shulman
A comment about the glue; which I think is an extraordinary metaphor. There is not oniy an absence of the giue across these fields; there is an, absence of the give within.

Just a week ago I had finished a unit with our teacher education candidates, all of whom already have bachelor's degrees in the discipitnés, on a concept that all of us remember from the 1960 's called "the notion of structure in subject matter." And the notion was that there ought to be something that cumulates and develops as you teach a subject so that, for example, the last short story you teach in an English course is learned in a somewhat different way than the first short story, because a set of concepts and principles and procedures for anaiyzing these things have developed over the course of the year.

Similariy with a mathematics course...similarly with a science course. Because if you look at the interview studies of kids studying, for example, high school algebra, most of them hāve no idea of why the topics at the end of the year come then and the topics at the middle come then and the topics at the beginning come then. To most of the students, these are a disintegrated, arbitrary series of topics which they learn and pass the tests on because they are docile; and the consequence of not doing it is ending up at a less pretty campus when they go to college:

And as I made this argument; and I made it as passionately as I could; one of my students raised his hand-a phi Beta Kappa graduate in mathematics from a major private university of the West Coast-and said: "How can I teach this to $\overline{m y}$ high school students if i was never taught mathematics this way myself in the mathematics department of my university? And I'm considered one of the best students who has gone through that department in the last couple of years."

So I think that part of what I am saying is that we are depending right now on both the cross-disciplinary giue and the intradisciplinary glue emerging from the subject matter departments àt our distinguished universities, usually in humanities and sciences. And that is not the way the subject matter is being taught to the future teachers or the future engineers.

I think that is \bar{a} serious problem, and mābe at some point we ought to address it.

R̀obert Yagè; Professō of Sciēnce Education; University of iowa; and
Prēsident; Nātional Science Teachérs Associàtion

Abstract

I did not know exactly what Dr: Roy would say; although we both had the benefit of reading Dr: Wayne Weich's very exhaustive and; if think; very fine paper in preparation for our discussant roles.

One cf the things that I would quibble about is the setting that Wayne put science education in. And I think that Dr: Roy; without knowing; has come up with a perfect example of the direction and setting that I would Iike to have seen Wayne use:

I have no juibble with the domains. As a matter of fact; I think that is a beautiful way of analyzing where we are and what has been done. But it strikes me that one of the things that is missing is a look at what science education is in a more philosophical sense. And to me ít is that discipline that is charged with iooking at the interface between science and society. it is that discipline, then, concerned with how we can interpret for society what it is interpreting for the scientifyc comuinity the constraints of society and the interplay between the two.

ít ís that setting, when \bar{i} read wayne's paper and his look āt the domains and the research that is being done, that concerned me a lot. In à sensé; I see that my role may be tying Dr. Roy's coments and Wayne's paper à bit together.

The other point that I would pick at just a ifttle bit-and I assumed that my role when asked to discuss the paper was to do a bit of picking and maybe to stir up a ifttie excitement so the rest of you have a chance to react against what \dot{I} might say or what Wayne has already said-is Waynés deemphasis of goals in science education. If you noticed, this was on one of the charts, and Wayne did not think it was going to be worth too much.

That is an extremely important areā, and, to me, it gets ant why sone of the other areas of thesearch and some of the other thinges we have done have not been too fruitful. It seems to me that the domains chart and what we hāve done in science education ts to assume that the discipline is one of studying what goes on in schools. We have defined it too much in terms of the one dimension of science, that is, the content dimension. And we have viewed our roless $\bar{a} \bar{s}$ simply ones of figuring out some way $\overline{\text { of }}$ taking this vast body of évergrowing knowledge and somehow getting kids; $\bar{k}-12$ students; to absorb ity. We hāve tēsted different ways of doing it, tried different techniques; different personalitiēs of tēāchērs, différēnt kindes of curricular matérials, but always with that fundamental goal. It is a mattē of getting students to know more than the professional scientist thinks hè or she knows.

It strikes me that this unidimensional view and definition of science is at the heart of and is the major problem:

Wayne has mentioned the Project synthesfis effort of which we were both a part. I think one of the striking resulte there was the lack of any philosophical perception on the part of teachers; except a commitment to the discipline, except to the content of science that the teacher knew and had experienced him or herself.

It seems tc ge that this lack of the philosophical perspective-a lack of any view as to what science teaching is about and what science education is about and what the fundamental mission of our discipline is-is a problem. Certainly the $N S \bar{F}$ status studies revealed that many teachers are able to voice goais, to state objectives, but most of the time when we tried to find examples of those stated phtlosophies and objectives in practice, there was nothing there. There was simply nothing beyond a commitment to imparting the knowledge that particular teacher knew or that appeared in a textbook.

I would look next at a few pleces of information that 1 think were missing from Wayne's analysis. It was mentioned this morning that there is a great mismatch between the science that is being taught and the science that is needed. Again, $\bar{D} r$. Roy touched upon that, \bar{I} think very eloquently. I think it is fair to say that there is evidence in the status studies that the materials and the curriculum that are being used and being followed in classrooms across the Nation are perhaps appropriate, at best, for 95 percent of the students.

Another related problem is the fact that we have paid no attention to instructional theory. And again it is fair to say that there is a mismatch as
 know s̄ould akē placee. And this mis̄ātch, too, could be lābeled àt 95 percent.

Many of you know that in the National Science Teachers Assoctation (NSTA) we have been invoived in a search for excellence, a search for examples of the exemplary or the desired or the ideai-state conditions that were identified by the Project Synthesis effort: As we have gone around visiting six centers of exceilence, we have been amazed $\bar{a} \bar{t}$ the number of these programs for which there has been à concern fōr curriculum but practically no knowledge of and no interest in instruction. And we think this is a serious problem...again, à major mlsmatcon.

Another point that 1 think is worth mentioning that came out of the sumthesis éffort, and mainly from the National Assessment of Educational
 less interest he or she displays in acience. We think that this is of considerable importance: There is something about what we are doing that actually ís causing the.-opposite kind of outcome than that we would like and expect in terms of interest. We found that the ionger a student stays in school-and this, you will remember, is comparing 9-year-oida, 13-year-oide, and $17-$ year-oldē=-the less comfortable à student is with studying science.

Another effort deals with the emphasis upon literacy. You will note in Wayne's analysis that he put ilteracy at a miderate or low classification.
 mention is the work of Minier and voiker. -Their work; funded by NSF; deais with student attentiveness in sciencé. In my mind \bar{i} can accept their définition of lattentivenesẹ ās really scientific litéracy. For thosè of you who are fāillar with that project, you know there were three elemente of attentiveness or literacy. The first element was interest-exprēssed intérest in science and technology. The report was that of typical high school graduates; 30 percent of whom expressed interest to the point of taking some action.

Anothegr aspect of literacy, as they defined it, was knowledge, and they checked but four concepts across the high school years. One of those concepts was molecule. And they found that only 25 percent of the high school graduates had a working understanding of that concept. As i said, they iooked at others. That is just one example.

The interesting factor about the finding for both interest and knowledge is that there was no increase in either across the high school years. That is, taking science did not increase knowledge and it did not increase interest.

The third aspect of attentiveness in science or, as in caining it, iftēracy, was the ability to pursue knowledge, to increase knowledge, or to increase interest. And when that is taken into account, we find that the formula goē way down and thére lē way lēse than 20 percent thāt do ānything about pursuing interest and/or knowledge.

When the three are put together, we find that onity 10 percent of the American citizenry meets the criteria. And ithink it is extremely important to \bar{g} ay that we are doing something wrong if we have oniy 10 percent of our population, 10 percent of the high school graduātēs, āblē to meet this définition of litēracy.

In summary; I would simply say; in terms of Wayne's paper; that 1 have no quarrel with the questions he has posed. I would be delighted to see those five questions as a research agenda. But I do have a problem with the setting he has proposed for science education. I do have a problem with the operational goals, the problems that have been identified if we were to use Lee Shulman's series this morning of troubles; puzzies, and problems. it seems to me we could be much more specific in terms of defining those if we could agree upon the fundamental goais of our discipline iñ an operational way.
i) I

主 $\overline{\text { think }}$ there are problems in the way we have measured those, and we have hā $\overline{\text { some }}$ confounding kinds of studies and reports. And guess that ise one of $\overline{m y}$ concerns in some of the metāanāysī̄ studiēs, $\bar{a} l$ though I must not get into that or I would be outweighed in a hurry in terms of what those studies do indicatè.

It strikes me that the teacher studies that Wayne has pointed out have ail the problems that he has identified. But the one, it seems to me, that has not been checked is that of philosophic orientation. Why is the science teacher there? What does the science teacher perceive his or her role to be? And it strikes me that most have a bad understanding of why they are there. Añ that singifng out some of the exemplary teachers of exemplary programs indeed shows already, with our studies of the search for excēllencé, some fundamental differences among the teachers who are doing thinḡ and those who are just there.

It seems to me, then, that we need to define our problems, to prioritize our goals, and to proceed with attempts to solve our problems in a good procedure that we all follow in science. Too much of what is done in the research that has been reported and sumarized, it seems to me; has been In the school environment only: And certainly the Volker-Miller study would suggest that the chool is the least important element as an institution in being responsible for the understandings and the attitudes and the knowledge that the high school graduate hàs about science as a field.

Comment: Dr. Lee Shulman
Your reference to that study that purported to show that the more students studied science the less they liked it reminded me of the old suggestion that the best way to solve problems of overpopulation in some countries was to add sex to the formal curriculum and the kids would turn off on that; too.
i too, have some fairly serious quibbles with Wayne about his meta-unalysis, especially with respect to teaching behavior, but $\overline{\mathrm{I}}$ trust that Tom Good will handle that one in either his summation or his conference synthesis; with the elan \bar{I} have learned to expect from Tom.

To reassure Wayne-there is far more research going on on student processes and student mediation of teaching than was referred to. And ithink he is absolutely right: it has turned out to be a very productive area of research-not in science, though some in mathematices.

DR. TALLEY: In discussing the effect of the environment, especialiy the home, you put it dowi as moderate and perhaps high: in 1977, tucy Selis, in her doctoral thesis at the University of California at Berkeley, which was later simplified in an editoriai in "Science;" analyzed women who had the ability to go on in mathematics but did not. There are four ways you can group people. And the one thet interested her was why women with the ability to go further did not do it. The dominant factor wās the attitude in the home, especially of the mother, followed very closely by that of the father.

How many pther studies have been done in this way, examining the cohorts of those who could do it but elected not to and trying to do a multiple variance analysis? \bar{I} realize that the statistics show only associations and not causal relationships; but if I were to desigñ à new curículum; I would do it in a way to counter any negative infiuence-that this is not a ladylike thing to do; or that engineers do not get paid milifon-dollar salaries as do first basemén.

DR- ALDRIDGE: Wayne, \bar{I} have read your papex. I have an advantage over the rest of the audience. In the figures you present on mean correlations and effect, you do not cite any errors nor do you indicate wass in which significant levels may have weighted the means. Are you satisfied that those hāve beén done appropriately? And are these érrors of sizes that you made 1gnored in prēēnting your table?

DR: WELCH: That 's a good point; Bill: The seriē of papers that formed the basis for some of my data wili be published iñ añ issué (May 1983) of the Journal of Research in Science Tezching. And they do report atandard errors for all of the effect sizes that they report or the mean correlations: The standard errors of the effect sizès are very much reiated to the number of studies; and I do not bēleve thé included studies that had fewer than a sample size of seven. Most of them were iñ the range of 30 and $\bar{a} b o v e . ~ T h e ~$ standard errors of the effect sizes range from perhaps 0.20 up to 0.90 . So there is quite a range. And it is not clear to me that an effect size of 0.40 is a significant one given the probability of error that is included:

As far as the relative size of the sample, the people who develop analysis techniques examined that and found little relationship between the number of subjects in a given study and its influence on the overall éffect size. There is some but it's not that large:

There is some concern and criticism about the use of meta-analysis-a process where you take a bunch of studies and try to come up with a singie characteristic. And some people are philosophically opposed to that. índ it offers some insight, and I am not as concerned about it as some others are:

DR. SHULMAN: Lēt me make two comments on that: One is about the effect sizēs and the choice of 0.40 as a cutof point. My colleague at Stanford; Nate Gage, is concerned about how we in the sociai sciences may be using effect sizes that set à far higher standard for what is significant than some other fields may: And he díd the following analysis.

Many of you who are readers of éther Science or of good newspapers know that within the last half-year or so there was a iargemcaie experimental fteld study of the use of beta blockers in trying $\bar{t} \bar{o}$ prevent secoñ heart attacks; I think it was, in people who had hà an infarct for the firat time. And a rather dramatic thing happened in this study. Aftér something like the first or second year; it appeared that the results were so strikingly in̄ favor of the experimental group that; on ethical grounds; the cominitee at NIH, I think it was; that was monitoring this study recommended that the study be terminated so that all people; including members of the control group; could have the benefit of these beta blockers.

Whàt Nāté Gage did, às professor of education at Stañord, was to gét the data which were published on this study and to analyze the effect size, which is something that we who do educational rēēarch look àt. Other folks do not tend to look at effect sizes.

The éffect $\bar{s} \dot{\prime} \overline{z e}$ (I believe, 0 .14) that was represented by this difference was so striking tū that case that they did something unheard of--they terminated the experiment in midstream.

We do make policy judgments in fields outside of education on the basis of what may, in the abstràct, look like small effect sizes. These are complex issuēs and we do not réally have that much time to go into them, but ithink we have to look carefully à some of these methods and some of our criteriá .

DR. SABAR: Wayne; I know you do not feèl comfortablē with some of the results. We have discussed it a little bit before. Yet \bar{I} wonder what kind of message we give to teacher educators if we really have that little éffect on teacher characteristics and teacher behaviors and if students' exposure to learning experiences seems to have a much stronger effect; especially in σ^{-}mathematycs (0.70).

According to your report, the more students are exposed to sctence, their learning outcomes improve. We may get the wrong impression that just by being admitted to the course (is important). But is it not, really; because of the teacher's initlative in the classroom; because he or she really guides the students into time on task, into a certain kind of activity, or a certain kind of homework that you have been pointing out? And I am rather concerned about the message that we do have to say to teacher educators.

DR. WELCH: I am afraid i do not have a very good answer to your question. What I am trying to do is to sensitize those of us in science education to focus a little bit more on student behaviors anu on some of the things that follow from that. One of the important characteristics of a science teacher is whatever it takes to sell his or her science course-to make it interesting enough that students will take more science in school, at the precollege level. That is where we need some research. Because I am not sure what it is exactiy, what the barriers and facilitators are of getting into science ciasses.
 conference we were at in Israel by both Susan Stodoisky and Dave Beriiner. Berliner is trying to depict the teacher as an executive in a classroom who 15 responsible for managing the productivity of a number of people that he or she hās rēsponsibility for.

DR: SABAR: That is a behavior.
DR. WELCH: But it is a different kind of behavior than the sort of things that we have examined before: I do not know whether it will work. it does tend to increase the status, and it may be reiated in some way or maother to the increased productivity of the ciassroom.

Some work that Stodoliky and Doyle did looked at the ciassioom...the student views, the ecological perspective; that classroom behavior is an exchange for some kind of reward, that you do things in class because of either the rewards you get through satisfaction or, more often, grades ōr something of that sort, such as you pay attention, you learn to usé
 that sort: And I think what is needed is research of that kind of student behavior that has implications for what teachers ought to do that enhances the: effectiveness of the students' behaviors.

DR. LANIER (Judith Lanier; Michigan State University): Wayne; my question is rélated to the lack of a strong focū on your part oin the studies of the cognitive processēs of tēachers and learners ās thē interact in the classroom: I was kind of struck by: "We have looked ac teacher behavior that hasn't paid off; so now let's go to studenis and study student behavior."

So I am raising the question of whether you thought about cognitive processes and left it out; or whether it just was not represented in the past so therefore you left it out, or whether maybe I missed the applications of cognitive science and the studies of cognitive processing of teachers and learners in your presentation.

DR. WELCH: \bar{I} thought about it. i was at a meeting in Pittsburgh just before Christmas reiated to needed research on cognitive processes and information science. What has happened in science education is that the
 to find in the sourcē which I used; which were research reviews (Project Synthesis, National Assessment, and the meta-anaiyses), anything that seemed to represent \bar{a} large amount of research in that area.

The research on the cognitive development=Piaget, Ausabelilan sorts of things, if those two go together--does inot lend itself very weli tō the kind of metāanalysis work that was done: So one reason it is ignored is because it was not included:
$\bar{i} \bar{t} \bar{s}$ the pércent of people who can do cértan tasks. It was included undē the student characteristics. That is $;$ the sudent characteriséces are very much related to what students lēarn. And if you look at the ability to perform cértāin tāks and you develop some kind of a measure to measure that; it corrēatēs around 0.4 to 0.5 with studeat achievement.

As far as gaps or promising future research on student characteristics, it seems to me that a lot has been done; and, except for some of the work that has recently been done by Larkin and others; I just do not know. 'It's sort of a void; an unknown, as to whether that holds promise or not.
\bar{D}. YAGER: \bar{I} am somewhat perpiexed with this kind of choosing inp sides: "Is the student more important or the teacher?" íkeep wanting to gét back to what is the fundamentai probiem and what is it that we are after. And it strikes me tō much, "oh; I'm into teachèr stuff, añ théréfore somebody is going to get money," or, "I want to study studeats."
v

It seems to me that that is where we need the philosophical orientation. We need to define the specific problem. And then maybe it would be obvious what we want to study or where we might go with what seems to me to be almost prejudices to a certain degree. It just strikes me thàt this sort of bantering is not getting us anyplace on any issue.

SESSION IV
 MATHEMATICS EDUCATION

The shortage of qualified mathematics teachers for America's classrooms is serious; and it will become more serious in the next few years. planners, policymakers, and administrators must recognizéthe complex causes of the shortage; understand something of its historical roots, and see it more clearly as the surface manifestation of a far more intractable phenomenon.

Our thesis is that the current shortage of mathematics teachers is asymptom of a chronic and pervasive disease: the failure of various segments of society and the educational community to take seriousiy the teaching of mathematics. There has been a serious devaiuation ō máthematics teaching, and that is the malady underiying the shortage.

We are reféring to attitudes toward mathematics, its teaching, and those who teach it. These attitudes are shared by students, parents, school administrators; members of the general public, State and Federal legisiators, mathematicians, mathematics teachers themselves, and any of a number of ōther people who affect what goes on in mathematics ciasarooms. We ciaim that despite occasional professions of admiration for the heroic job that mathematics teachers do, too many people today have little regard for either the profession ō the àctivity of mathematics teaching. Some who clāin to vaiue mathematics téaching most highiy are those who often in subtle ways, express the greatest contempt. The devaluation of mathematics teachins raqt only contributes to the teacher shortage but $\overline{\text { ala }} \overline{\mathrm{s}} \mathrm{o}$ operates to thwart attempts to relieve it.

The current shortage of mathematics teachers is most apparent in the secondary school. There one can identify ciear expectations of a background in máthematics and pedagogy and can document that an insufficient number of people are avaliable. In the elementary school; however, the shortage of trained teachers of mathematics is less obvious. Among the cadre of certified elementary school teachers, there are too few whose knowledge of mathematics

[^2]is sufficient to the demands of today's curriculum-let alone tomorrow's=-and who feel comfortabie with mathematics. Schools face an especially severe shortage of teachers who āe àequatèy prepared to deal with the unique concerns of mathematics teaching in the middie school years. Although our focus is the problem at the secondary school level, we feel strongly that there is a cisisis in the teaching of mathematics at all levels.

In what foildws, we look first at some ideas that have been proposed for alleviating the current shortage of mathematics teachers, examining what these 1deas suggest ābout a more satisfactory approach to educational problems. Then we look àt the school mathematics curriculum in the United States and the tieacher's role in developing the curricuium. Next, we corsíē mathematics teaching in the United States and how it has been viewed by the participants iñ the process; ās will ās by outsiders. Finally, we outline bome directions for improving mathematics teaching that are suggested by our observations. We beifeve there is a research agenda inherent in these observations:

SOME IDEAS FOR REDUCING THE SHORTAGE OF MATHEMATICS TEACTEEX

In examining various propossls for reducing the shortage of qualified teachers of mathematics; we have been struck by the frequent clash between short-term and long-term goais. Some proposals seem ilkely; if implemented; to exacerbate the problem of making mathematics teaching a profession that will attract and hold superior teachers in sufficient numbers to make future shortages unlikely: There is a very limited research literature on which to base projections of the costs and benefits of proposals. Research should be conducted into their possible effects; including any side effects; perhaps concurrent with their implementation:

Raise Salaries for Mathematics Teachers

One line of argument says that if school mathematics teachers were paid more; there would be more candidates entering the field and fewer mathematics teachers would leave. The contention is probabiy vaitd and weil worth pursuing. 'We have former students à èvery degree levei who have abañonēd mathematics teaching for higher paying jobs. Clearly, low salaries contribute iñ à major wā to many teachers' decisioñ to lēave the profesesion.

Nonetheless; people leave mathematics teaching for many reasons; and these should be studied. Serious study is also needed of the changes-both beneficiai and harmfui--in the profession that would be brought about by increased salaries. For example; although the benefits could include attracting to school mathematics teaching talented and commited people who might not hāve con̄idered it otherwise, the costs might include àtracting and holding more of the unqualified.

We do not oppose higher salaries for teachers, nor do we oppose paying mathematics teachers more than other teachers: As a short-term tactic; however; differential salaries possess some built-in assumptions and 1imitations.

- First, the tactic seems to assume that the re ane an substantial number of qualified mathematics teachers "out thérē" who, given enough pay, will stay in or return to teaching. The àsésumption is questionable.
- Second, differential salaries may adversely affect how mathematics teachers are distributed, with affluent school systems being able to exert even more leverage than they now do in attracting the best qualified teachers.
- Third, one must consider the divisive influence that differential pay might have on the profession. One group of teachers might be pitted against another. The Director of Teacher Education and Certification in the New York State Education Department, reacting to a plan for differential pay in that State, argued:

Such a plan could possibly cause a major uprising among the 192,000 persons presently serving in the schools. That potential would result in more problems in New York State than any solution might be worth. (Gazzetta; 1982; p. 19)

Provide Incentives to Présérvice Teachers

Another popular proposal for dealing with the shortage of mathematics teachers is to provide grants or cancelable loans for students preparing to become mathematics teachers if they agree to teach mathematic ̄ for some specified minimum time. The long-term effects of this proposal may well be positive. Incentives--if handled properly--might encourage some talented young people to consider mathematics teaching; and one of the things we ask; as educators of mathematics teachers; is the opportunity to appeal to such students.

There is, of course, a negative side to any such -incentive program-the likelihood of attracting to mathematics teaching people who are not interested In it ass àarēor and who will teach only the minimum time needed to repay their obligation. Frankly, we have heard of no proposal in which the incentives were so high as to attract large numbers of such people. The positive and negative aspects of incentive programs now under way should be studied.

Change the Requirements for Becoming a Mathematics Teacher

Some argue that the shortage of mathematics teachers is so_severe that certification requirements should be changed so as to "free up" pools of talented people to teach mathematics. One of these pools consists of teachers from other subject fields who have not studied enough mathematics to qualify for certification as a mathematics teacher in a middle school or a high school. Many of these teachers are nevertheless assigned to teach mathematics, and some authorities have suggested that the shortage might easily be ended by providing these teachers with training in mathematics and then certifying them.

Our experience indicates that the suggestion is naive. Such teachers often have very weak preparation in mathematics and need extensive opportunities to develop a depth of mathematical knowledge and abilitywhether measured by courses completed, competencies tested, or inservice programs survived. Few of these teachers, in our experience, have managed to develop and maintain a genuine commitment to mathematics teaching: Short-term programs that provide workshops, inservice courses, and the ifke ajmost aiways reflect a compromise in the quality and depth of mathematicai knowledge that teachers are likely to need. A long term side effect of this proposal might be the staffing of high school mathematics departments with underprepared, yet certified, teāchers who would "act $\bar{a} \bar{s}$ a barrier to the subsequent enistment of better qualified and better prepared teachers.

A different compromise can be seen in proposais in Georgia and other States for à secoñ ievei of certification for teachers of non-college ${ }^{-}$ $\bar{p} \bar{e} p \bar{r} a \bar{t} \overline{r y}$ mathematics courses. The mathematics curriculum for students who are not bound for college is already a wasteland. It deserves the attention of fully trained and comitted teachers. Study of the sitwation is needed; but in our view; teachers of non-college-bound students are ilkely to need a broader knowledge of mathematics and its applications than their colleagues who teach the college bound.

Another pool consists of scientists and engineers from industry and science-trained college graduates. These people may have adequate preparation in mathematics, but they do not have training or experience in teaching.

Since móst such recruits to tēaching lack traditional
 create controversy. States should consider competencybased (rather than credit-hour based) teacher certification; an alternative is to create a separate category, say, adjunct teacher; comparable to an adjunct professor in a university, for scientists who want to teach in schools but ${ }^{\circ}$ 1ack traditionai certification. (National Academy, 1982; p. 18)

Y̌et another pool consists of students preparing for careers in business and industry who might be enticé into teaching: Gazzetta (1982) has proposed that business, industry; añ education enter into a cooperative progran iñ which capable high school students would enroll in collegiate programs preparing them to teach in elementary and secondary schools for 3 years. Business and industry would agree to employ the graduates of such programs during the summer and then would provide a stipend to enable the completion of \bar{a} graduate degree in mathematics. After 3 years of teaching; the graduate would resign from the teaching position and join the sponsoring business or industry:

Most proposals to recruit teachers from nontraditioral backgrounds assume that mathematics teaching requires a knowledge of either mathematics or teach fig; but they fail to acknowledge that both are essential. These proposals also treat lighty the question of commtment to mathematics teaching as à profession.

Provide Help in the Summer Months
For mạny máthematics teāchers, summer employment has become an economic necessity. Unfortunately; such employment-like moonlighting-often has no relationship to mathematics teaching, and its value for professional growth is likely to be nil.

Some appeaíng proposais have been made to provide summer work in industries or in government laboratories where the teacher can be involved in applications of mathematics. Programs to impiement such proposais, however, are rare and not well-known. The feasibility of the proposals should be explored and the programs studied for their value in professional development.

Another $\bar{s} \bar{u} \bar{g} \bar{g} \bar{s} t i o n ~ i \bar{s}$ thàt $\bar{s} c h o o l \bar{s} \bar{s} h o u l d ~ e m p l o y ~ s o m e ~ m a t h e m a ́ t i c \bar{s}$ tēacherrs for 11 months a $\bar{a} \bar{e} \bar{a} \bar{r}$. The summer months could be used for the preparation of course mâtēīal and sȳllābūēs. Our experience with tēachēr̄ who wére hired during the summer to assist with the development of teaching materials indicates an added benefit of increased professionalism and a comitment to make the material work effectively in their classrooms:

A thread running through the proposals discussed so far for dealing with the shortage óf quaíf千́éd mathematics teachers is that money in the teacheris pockē is the key to any solution. Nō everyone takes this view:

Nonmonetary incentives include giving more support services to teachers; freéng them from noninstructional tasks; and récognizing outstanding performance... Some people think such iñcentivē $\overline{\text { might }}$ be more importañt thän added pay iñ rétaining good teachers: (National Academy; 1982; p: 17)

Our view is that ; ímportant as adđítional funds may be in attracting añ retaining quaífíē mathematics teachers, in the iong run attitudes wili prove more importañ than funds: That does not mean that sajary is unjmportant to teachers; but it does suggest that uniess the teacher's commitment is appreclated and enhanced; rather than thwarted; monetary incentives will fāll to stimulate superior teaching. Consider the following three pieces of information taken from surveys by the National Education Association (Editoriā Projects in Education; 1982; pp: 245; 248):

1: The principal reason given by teachers for their decision to become a . teacher was a desire to work with young peoplé. This reason was given by over two-thirds of the teachers surveyed in 1971; 1976; and 1981.
2. The percentage of teachers planning to remain in teaching until eligible for retirement declined from 49 percent in 1976 to 35 percent in 1981.
3. The percentage of teachers responding that they certainiy would enter teaching again decínē from 53 percent in 1966 to 45 percent in ín 1 and 38 percent $\dot{1} \bar{n} 197 \overline{6}$; and then dropped tō 22 percent in 198í.

It appears that the morale of teachers has declined faster than their relative purchasing power. if teachers are not permitted to work with young people in the ways they consider most appropriate without neediess interference from authorities=and if other doors are open to them--they will not stay in the profession. The morale of mathematics teachers is not necessartly lower than that of other teachers, but for the qualified mathematics teacher doors have been opening to opportumities in business and industry.

The solution to the shortage of mathematics teachers is not just more money--ēven though more money $1 \bar{s}$ needed for education and some parts of the solution may cost a lot of monē̆. The solution requires thāt pore students be recrufted to the profession, that competent quallfied teachers be retalned in the profession, and that incompetent or underqualified teachers either be helped to improve in quality or be helped out of the profession. A condition of this solution is that the profession fiself must become more attractive in the rewards it offers.

HOW DO WE APPROACH EDUCATIONAL PROBLEMS?
An important observation about the various proposals for reducing the shortage of mathematics teachers is that these proposais have not come from the teachers themselves. They have come from members of various groups who manifest a concēn for the plight of the classroom teacher but who are not themselves engaged in tēaching. Even thè various profēesional āsociations that profess to speak for the mathematics teacher seldom count more than a handfui of practicing teachers among their leadership and have only a fraction of the practicing mathematics teachers among their membership.:

Educationā problems iñ thís country generāly have been approached in a top-down fashion; often with little effort to find out what the problem looks itke from below-the ciassroom; in this case. One of the difficulties we all face in addressing problems reiated to the teaching of mathematics is that most of us who wrestle publicly with the problems have not been in many clāsicrooms lately. We have not walked iñ the shoes of the mathematics teacher who hàs flivè clāssēs (and thrēe "preparātione") à day.

Hear the voice of a second grade teacher as she expresses her frustration at yet another newspaper column on mediocrity in education:

I feel an unrelenting need to express myself regarding the negative feelings surrounding public education and the fact that the classroom teacher is rarely the decision maker, the one person who is in the position of having real ingight into children and the education process....

Mediocrity comē from the feéling of impotence in a mases of others who are making decisions which affect the ; ćiassroom teacher: legislatorg; university professors and researchers; boards óf éducation; administrators; curricuium directors; parents; etcio leaving the ciassroom teacher at the bottom of a pit surrounded by the decision makers pointing their fingers and saying (in
ζ_{x} many different ways) "Do it my way." Shouid the teacher bé àble to make sense of all of that melee; a new bandwagon will come by for the decision makers to attach themselvē tó and so new directions are shouted into the pit....

The lack of concrete support; diminished morale; mixed messages; the feeling that "I must not be good enough to take responsibility for the education of my students;" and the feeifng that one is; at times; a puppet victimizes the child. For we know in our professionai
 grow and iearn and "find thac knowledge that is withing" but i can assure you that a negative working environment caused by society's demoralizing attacks on schools can affect the child....

- Excellence iñ education will occur more frequently when the teacher becomes autonomous and 18 made responsible for the education of students. Excellence will occur when a public school teacher's status is raised to that of a professional with the salary and esteem equal to other professions. Excellence will occur when we cease looking at education as meeting minimum competencies." Excellence will occur when teacher training institutions cease looking so strongly at teaching styles; techniques; philosophical stances; and the ability to expound educational fargon, and take a closer look at necessary personality traite: an aura of confidencé of being turned on to iffe; of having the ability to empature with a chilú ; of being secure enough in the assessment of \bar{a} child \bar{s} emotional and academic needs to meet anxious parents and administrators calmiy; of being secure enough to be first and foremost; the child's advocate.

The teacher is the clue, the catalyst; the core around which all else flows. We need to begin there. (Ginn; 1983, p. 6).

That voice should haunt anyone who addresses the issue of improving the teaching of mathematics in our schools. We do not presume to speak for the teachers themselvesp But we do wish to bring forward certain consideratinas that have occurré $\bar{t} \overline{0}$ us as we have thought about the problem and as we have t'ākē $\overline{\text { to }}$ tēachers.

THE SCHOOL MATHEMATICS CURRICULLM IN THE UNITED STATES

What the Curriculum Has Been
Throughout this century, as the school mathematics curriculum has been pulled to and fro by various groups-educational psychologists, mathematicians, mathematics educators, school administrators, admissions test deveiopers, curriculum thecrists; schooi boards; pubiic interest groups; bureaucrats, teachers' associations-the teacher of mathematics has tended to t즈 ignored, or worsé, given à token hearing.

Sixty years ago, the National Comittee on Mathematicai Requirements of the Mathematical Association of America issued a report on The Reorganization of Mathematics in secondary Education (i923), which was meant as a repiy to

- the education generalists who argued that mathematice; iike any ō̄er school subject; hàd to have "social utility.". This confrontation bétween generalist and specialist joined the issues of mathematics for everyone and mathematics for the few: Forced to defend its place in the curiculum; mathematics seemed unable to justify its value beyond the most trivial forms of arithetic; . aigébra; and geowetry, and accordingiy decinined in the school curricuium during the thirties and forties.

By the mid-1950's, school mathematics was again on the defensive-this time against back-to-the-basics educators who, appalled at the inroads that progressive education had made in the schools; wanted to recapture a mythical past when everyone ccild calculate ccobe roots and divide polyoomials with ease. Into this fray; but ignoring both sides; stepped the mathematicians; bringing the "new math." They brought many positive forces to mathematics teaching; but they did not manage to get teachers to work with them as colleagues and equals. As so often peppens, teachers were treated with the \rightarrow kind of casual arrogance only profes acs can manage, when they conceive of the lower schools" (Schaefer, 1967, p. S1), and this treatment may have been the Achilies' heel if the new math movement.

The popular viēw these days is that the new math failed. A more
 to analỹè this cuiriculum reform effort; is that the new meth was never realiy tried--in the gense that it did not permeate moat classrooms very far. Referring to the curricuium innovation associated with the new wath; the report of the Nationai Advisory Comitree on Mathematical Education (1975) conciuded: "The principal thrust of change in school mathematics remains fundamentally sound, though actual impact hās been modest réātive tó expectations" (p. 2i). The popūar perceptioñ, however; deems to be that the change was massive and that it has now been repudiated.

Partiy because of the perception of the new math as a failurej the 1970 's produced another back=to-basics movement. Many schools had never been away. The result was a tirivialization of textbook content in flood of duplicator workaheets; and much hand wringing when; at the end of the decade; the National Assessment results showed that many studenta were unable to usa wathematics for solving aimple problems (Carpenter et ai.; 1981).

A recent turning point in the tug and puil of the schooi mathematics
 Teachers of Mathematics (1980). This report; which refiected an input by mathematices teacherss, presented recomendations.for school mathematics in the 1980's. The report sèt an āendà rāthér thān provialing a blueprint.

The recomendations in the Agenda called for an emphāis on problem solving and applications; a reexamination of basic skills̄; incorporating calculators, computers; and other technology into the mathematics curriculum and mathematics teaching; and more mathematics for all students. The reconmendations have been criticized; applauded; widely cited; and widely ignored. Textbook publishers have indicated that they are fncorporating the recommendations iato their material; but the textbooks look much the same as before. For the most part, classrooms continue in a driti-and-practice mode.

We follow the Agenda in belièving that the impact of computērs will change mathematics teaching; the school mathematics curriculum, and teacher preparation programs: We too would applaud genuine problem solving by students. We endorse the recommendation that every high school graduate should have 3 years cf appropriate high school mathematics: But we further belleve that the mechanisms to bring these changes about do not exist independent of competent, highly trained mathematics teachers. The arena for action is the classroom--not the superintendent's office, not the bureaucrat's office, not the mathematician's office, and not the speaker's platform.

The corollary to these comments is that if the mathematics curriculum changes as proposed through the 1980 's, the need for competent mathematics teachers will become more desperate. More teachers will be needed, they will need more and better training, and many teachers in the fleld will need advanced training and, perhaps, retraining. In short, what is now a serious shortage may soon become critical.

How the Curricuium Has Been Seen

Máthematics has traditionally played a key role in deciding who would be allowed to continue in the educational aystem and obtain the benefits society offers the educated. Even before mathematics wā identified ā̄ the "critical
 scientific and technical profesions, achievement in mathematices hād been weil established as an indicator of fitness for higher education. In countries such as France and Is rael, mathematics maintains its status as the gatekeeper to hígher education. Here in the United States, its role may be less
 example, half of the Scholastic Aptitude Test is devoted $\bar{t} \overline{\mathrm{c}}$ the assessment $\overline{\mathrm{o}} \overline{\mathrm{f}}$ mathematical abilities that candidates have developed during their school yeàrs̄.

At least in part because mathematics is seen as a necessary evil by most students, and perhaps by many teachers; mathematics classes have a sameness that can be stifing. Boredom seems to be accepted as an inevitable accompaniment to the mathematics experience in schooi: $\overline{A B}$ an observer noted

ment about math ciasses is that they were Wes perceived as being more fun-ai got the students looked forward to science but no pok forward to math. (Quoted in Fey;
School ma mathematician offers many a estimation, co demonstrate statistics, probability, (ān perhapo terms of the abila
\qquad Tas two faces. To the mathematics educator and to many bject is challenging and potentialiy exciting- it oblem solving; pattern finding; expioration; proof; P applications to other fields; and opportunities to d to develop intuition. It has many parts, including Pmetries, algebra, number theory, combinatorics, metic. To other educators and to the general pubilc teachers of mathematics), school mathematics is iviewed in
 expressions and some knowledge of elementary concepts of geometry and measurement- Many people might define the mathematics curificuium that way- it
 Such \bar{a} definition; however; misses much or whet the schooi mathematice cūricūlum might be.

The Teacher's Role in Curriculum Change

When people discuss the failure of various curriculum development projects to have made much of an impact on mathematics teaching; they may point out that the teacher is constrained by various conditions that put ifmits on change. They seldow-in this country, at least-talk about enlisting the. teacher in curriculum development.

American mathematics educators tend to disparage grassroots efforts tó improve the school mathematics curriculum. One hears scornful conments about "reinventing the wheel," or; as someone has said, "reinventing the flat tire.". Instead, instructional theorists and curriculum develapers tend to look for some way to get around the teacher and to provide an instructional package that does it all: a teacher-proof curriculum.

It is disturbing that educationai theorists have promoted this view and èven more dic urbing that so many mathematics teachers have eageriy accepted 1t. The teacher-proof curriculum idea iś, after all, built on the notion thà the wain thing wrong with current approaches is the presence of a tēacher to misunderstand, distort, and subvert the instructional pracess:

Why have teachers accepted the icea that they are incapabie of taking part in the curriculum development process? Lortie (1975) has argued that the system for recrūting entrants into the profession tends to select people who are conservatively inclined and who are unlikely to be interested iñ invēting the effort needed to change the circumstances of teachingo Teachers tend to resist change, in fortie's view; because of who they are and how they have been fecruited into teaching:

But does that explain teachers reluctance to participate in curriculum change? Let us examine the prevailing myths about the teacher's role in curriculum development in three different countries: Sweden; Engiand; and the Unité to say they have no bāsis iñ fact. It is rāther to emphasizé the function of these conceptions; whether or not they correspond to reality, in guiding people's actions.

Sweden has a highly centralized system of education; and the Swedish myth is that the government should set the framework for curriculum development; as for other educational matters. Teachers in Sweden actually welcome the active role of the central government in taking the initiative in educationai innovation (Dalin, 1973, p. 245). The politicians set the broad aims for education in Sweden, and it seems reasonable to most educators there that the central administration; with its greater resources for research and development, should have the responsibility for directing reform. Consequentily, it would be unthinkable for a teacher or group of teachers in Sweden to initiate any innovation that did not conform to the nationaliy prescribed curriculum. This is not to say that iocal initiatives have not been successfully attempted or that ail teachers accept central direction pasesively, but only that the myth of teacher deference to central decisions guidēs Swedish educational thinking.

Fingland has a different educational tradition and a different myth. The English subscribe to the myth that the teacher is responsible for determining the curriculum: As Maciure (1972) has noted:
[This is a myth] in the sense that it expresses great truths in a form which corresponds more to an idea than to reality. The iess factualiy correct it may be; the more important it is to assertio.o.to refē to this as a myth is not to denigrate it. it is a cruciai eiement in the English educational idea. It is the key to the combination af pedagogic, political and administrative initiatives which provide thè drive for curiculum reform In England and Wales: ($\overline{\mathrm{F}}$: 4.2)

One can see the myth operating in the Engiish invention of teacher centers and in the major role teachers have piayed in most English curriculum development projects. The Engiish attitude toward curriculum reform is very diffēent from the American attitude.

What is the American myth about the teacher's role in developing the curriculum? Traditionally, it has been that the local comunity is thé determiner of the curriculum: We have given considerable power to local school boards; acting outside the profession and for the community, to determine what shali be taught in school: There is merit in this approach.

Mark twain was not completely correct when he observed:
In the first place God made idiots. This was for practice: Thèn Hé made School Boards. (DeVoto; 1946; p. 567)

Local boards have been given responsibility for curriculum policy; and iocal teachers are expected to work up alternatives for board decision and work out details once policy decisions have beet made.

But the traditional myth of local determination of curriculum seems to be crumbling. A major reason is the mobility of our society: When parents move from one place to another, shey expect their children to study much the same mathematics in the new school that they did in the old one. Mathematics; people believe, is a subject with a strong partial ordering, if not a linear ordering. If you miss out on some mathematics in the sequence, you will never catch up-now there is à myth we all understand. Our system of Carnegie units, our national tests for cōilege admíssions; our textbook pubíshers seeking national sāes=-all conspire to make the school mathematics curriculum a bland concoction, relatively uniform across communities and highiy resistant to c":ange: Add to this the growing dēirē to State departments of education to ensure minimum standards; and one has the local school-and the teacher=caught in a web of constraint.
 decades have helped to break down the myth of home rule in curricuium; the
 that only the local schools know them well enough to devise an appropriàe curriculum for them. As ovsiew (1973) noted; the curriculum development projects of the $1950^{\circ} s$ and $1960^{\prime} s$ proceeded on the basis of a completely different assumption; namely:
[that it would be worthwhile to spend] milifons of dollā̄̄, ūing the vēry finest scholā̄̄; and paying for research; field test and development to create curricula that could be used in thousands of school distriets, rather than spend hundreds of dollars using teachers to make curricula to be used in one school district. (p. 530)

The sentiment is familiar, and one acceptsit: Who could be against efficiency and economy in curriculum development $\bar{?}$. One shouid reailze; however, what this myth is saying about the teacher's role: Teachers may be aliowed to participate in curricuium projects, but they should understand their place. They are helpers or guinea pigs, not true collaborators. The tēachér's role ī to be à consumer of the finished curinculum that someone else has developed someplace else:

How the School Mathematics Curriculum should Be Seen

Assessing the curricuium reform activities of the School Mathematics study Group (SMSG) -the best known; and probably the largest, curriculum development of the new math erā=its director; Ed Begle (1970, p. 27), argued that SMSG had lielped to bring under control the problem of teaching better mathematics. Not under control; and open to research; was the problem of teaching wathematics better. Although Begle accurately perceived the challenge of the two problems; he was overoptimistic in his assessment. One of the ciearest iessons of the curiculum reform efforts of the sixties and seventies was that although there are many barriers to curriculum innovation, pressures for change will always be present (Howaon et al; 1981; chapter 1): The process of curriculum change needs to be both continuous and continual.

A more important lesson, but one that perhaps has not been well learned, is that the teacher is the focal point for any change in the school māthēmātics curriculum.

There is one thing that distinguishes teaching from ali other professions; except perhaps the Church -no change in practice; no change in the curriculum has any meaning unless the teacher understands it and accepts it. This is a simple but fundamental truth that no curriculum builder can ever afford to forget. If a young doctor gives an injection under instruction; or if an architect as a member of ar team designs a roof truss; the efficiency of the infection or the strength of the roof does not depend on his faith in the formula he has uned. With tie e teacher it does. If he does not understand the new method, or if he refuses to accept it other than superficially, instructions are of no avail. At the best, he will go on - doing in effect what he has always done, and at the worst he will produce some travesty of modern teaching. (Beebe, 1970; p. 46)

Our contention is that the teacher must not only understand and accept proposals for curriculum change, but that he or she also needs to be educated to participate in the process, should be expected to participate, and should expect to participate. part of the professional development of mathematics teachers should be training and apprenticeship in curriculum work o It would be unrealistic to expect that all curriculum materials will be designed by teachers or that ail teachers wii choose to participate in designing them. But as many teachers as possible should be made to feel part of the process, and ai should feel an obligation to adapt curriculum material to their situation.

Curriculum development will have to coexist with 'nonparticipant: teachers: but the latter will still
\therefore. have $\bar{\varepsilon}$ vital contribution to make providing they are familiar with the significance and the workings of innovation The lessons of the reform period we have recently witnessed are that most attempts to enforce radical changes in practice have been subject to trouble and distortion and then only rare iv here original intentions been realized: if innovation is to proceed more satisfactorily in the future then; it is essential that we ensure better understanding and acceptance by teachers. Consequently, one of the most significant tasks for future work in the field of curriculum development is to broaden the base of innovation. (Howson et al.; 1981; p. 265)

MATHEMATICS'TEACHING IN THE UNITED STATES

What Mathematics Teaching Has Been

Who Are the Teachers? Teaching historically has been one of the most open of professions; providing añ avenue for talented people to rāsé thér status iñ society when other avenues were closed to them. Until recently, women and minority group members who were gifted in mathematics went into manthematics teaching because other opportunities were not availabie. That situation has changed. Students entering college today fiñ that a sound preparation in mathematics allows them to choose among many attractive undergraduate majors; Kand students graduating from college today with a major in mathematícs or computer science find inviting career opportunities competing with teaching for their attention.

Over the past 15 years; the number of women preparing for secondary mathematics teaching at the University of Georgia has decilned. In 1970; approximately 80 percent of our prospective secondary mathematics teachers were women. The decline in the teacher candidate population seems largely attributabie to a decline in the number of women enrolling in the program. The reason, we believe, is that many other career options are now open to women who have talent in mathematics.
-
As we récruit young people to considér mathematics teaching as a careér, we want to draw from the same talent pool ās the fields of engineering; computer science, and mathematics- The demands of mathematics teaching cail for the same range of talent as such fields; we cannot accept the demeaning notion that only the less talented are fít to teach. As mathematics educators, we want to tell our story of mạthematics teaching as à chailenging and rewarding çareex to the whole range of students with mathematical talent.

What has Teacher Education Been Like? Mathematics teaching has been approached somewhat differentiy in the elementary grades than in the secondary grades if only because élementary school teachers historicaliy have been genè have beeñ, whenever possiblé, university graduatē with the equivalent of a major in mathematics plū preparation in pedagogy. of coursés thése have been the expectations; not necessarily the reality.

Gn colonial America, it was an exceptional grammar school teacher who knew "fractions" and "the rule ce three" (cajori, 1890, p. 9). The introduction of certification requirements in the latter part of the nineteenth century substantially facreaged the amount of college training required to teach in an elementary school: Yet by 1960, the mathematics educatlon of a typical graduate of a 4-year certification program consisted of 2 years of high school mathematics, one course in general mathematics; and a course in methods af teaching mathemaitcs. The méían number of semester hours of mathematics required to teach in high school was 15, and a survey of high school mathematices teachērs iñ 1959 found thàt 7 percent had taken no college mathematics and onīy 61 percent had ctudied calculus or more advanced coursē (G1bb ét ai.; 1970):

Given only a limited amount of time in which to prepare teachers, and recognizing thāt the conditions of teaching have become much more demanding; mathematices educators have been increasingly concerned with equipping the preservice teacher to survive the firast year on tie job. By arranging fō the preservice teacher to get out into schools and by providing courses that are almed at the practical concērn̄ of tēaching, they quiṭe naturally hope to make the teacher training prō̄rām ā rē̄ēvant $\bar{a} \bar{s}$ pos̄siblē. Such moves have generally been applauded by preservicee teachērs.

An orientation toward practicality in teacher education hās much to recommend $\overline{i t}-$ there is iftele point to a program whose graduates lack the skill needed to keep ōrdér in the čiassroom and $\overline{\text { to }}$ manage their other responsibilities as teachers: One should noté however, that a view is likely to be perpetuated in which subject matter is deaicowith in terms of concepts and tēaching in térms of "skills."

The shift to a survival orientantion hās meanit thāt teachers enter the classroom without much preparation for \bar{a} careèr in teaching. They may be equipped to use the textbooks they are givēn, but they are not equipped to develop curriculum unites of their own. They may know how to follow the syllabus for a geometry course; but they have not thought about alternative ways that geometry might be integrated into. the curriculum. 'They know about the content of the courses in the grades they teach; but they are not fadiliar with-and may not consider it their business to know about-the mathematics taught in other grades or in other school subjects. In short, they have not been educated to be mathematics educators.

That Has the Teacher's Professional Lifè Been Likē? It is comnonplacee to ask why the schools cannot be run like būinesses or industries. Thē̄ āē. in fact; the false equation between educating a child and manufacturing a product is the source of many of our difficulties in education. It has led too many people to conceive of teachers as educational technicians rather than as autonomous professionals or educational leaders.

This model--coupled with textbook material that dominates how classes are organized, mandated assessments that lock instruction into a straightjacket; and peers who bring heavy sanctions down on the head of the innovator-has brought a stultifying sameness to mathematices classrooms and a diminished sense of importance to mathematics teachers. Further, a key person in the professional life of the teacher-the building principal--has too seldom been an instructional leader who works with teachers as colleagues. Principals, too, have bought the managerial model.

A key to the "1mage problems" that teaching has contended with in recent
 tēachèr educātion programs-may lie in the close look that every student gets at teaching béfore deciding whethèr to énter it ās à profēsion. Not only has that close look revēaled a beleagured soul, āsked to do too much and given too little with which to do it; but also the messages froy society to the student have suggested that teachers may not have the answers, and certainly do not have the authority, to act as they once did.

Proposals to "deschoól" society and tō free children frou oppression, though they 酥y have litţle visible impact on how society manages its schools; commutcate to students a diminished view of the teacher's importance. As the ríghts of students have quite properiy been asserted; there has been a price paid in the quaifty of the reiationship between student and teacher. As society, through its boards of education and State departments of education, hās moved to ensure that the quality of education is improved; the teachē has been caught in the middle: forced to give clās̄room time to preparation for and the administration of tests; compelled to fill out more paperwork; and obligated to face students and parents whose stereotype of the teacher is increasingly that of an incompetent; powerless; poorly qualified; iow-status person.

Many teachers today find it difficult to maintain the sense of service and mission that historicaliy has enabled teachers to put up with adverse circumstances óf ail sorts. A series of research studies sponsored by the Nacionai Science Foundāion provide a view of the ciassroom from the teacher's perspective (Fey; 1979a; 1979b):
"-.i've had a lot of spark taken out of me in the iast
two years. We hear administrators taiking about meeting
the needs of students-n̄̄ividualizationa- But we never
get time of \bar{y} to develop these things or the financial
support....I've talked to them about getting materianis and
teacher relationship. Bū I find it very difficult to
stand up and play Johnny Carson everyday."
"I aiways thought that the main goal of education was
teaching kids; now I find out that the main goal is
management."
"We need to be working with teachers; not checking on
them-. Education is generaliy a negative enterprise .
toward children; toward teachers. it is a highly
structured reward structure which emphasizes the
negative. Those who get rewarded are those who make the
fewest mistakes." (quoted in Fey, 1979b, p: 499)

As Harold Tayior (1982); high school teacher of mathematics in California and a director of the National Councll of Teachers of Mathematics; said last year in his testimony to the National Commission on Excellence in Education: "Teachers feel they are neither respected nor appreciated. In such a setting of finustration and unhappiness; mathematics education cannot attain excellence" (p.3):

What Mathematics Teaching Needs ta Become
We iive in a complex, dangerous, and fascinating world. Śfence has played \bar{a} role in creating the dangers, and one hopes that it will aid in creating ways of dealing with

> these dangers. But more of these probiems cannot, and will not, be dealt with by ocientists alone. We need aij the help we can get, and this help has got: to come from a scientifically literate general public. ignorance of science and technology is becoming the ultimate seif-indulgent luxury. (Bernstein, 1982/83)

We in the United States need a renewed commitment to the learning of mathematics-and therefore to tts teaching-not because we need to "catch up" as a Nation with the Russians, the Japanese, and the Germans or because test scorē have fallen and our pride is hurt, but because the quality of the future livē of our citizens depends on whether or not they have the mathematical tools for thinking about problems that confront them individualiy and collectively, As we work toward creating this commitment, we need to recognize that no quick-fix "solution" to the shortage of qualified teachers of mathematics; however effective it might be in placing people in classiooms, can accompiłsh the transformation required in what it meañ to teach mathematics as an activity and a career.

The image ut mathematics teaching must be changed, and the oniy honest way to do that is to change the substance as weil. The transformation of mathematics teaching must uitimately become a cooperative éffort in which ail segments of sociéty-pupils; teachers; parents; administrators; schōl boards; textbook publishē̄̄; the general public; and people at all levels of govern-ment--work togethér to make teaching in general; and mathematics teaching in particular, a more rewarding entērprisē for all concēned.

Without an expressed national poifcy on education in mathematics; Americans work within the framework of a tacit poitcy that views school mathematic \bar{c}. iargeiy in terms of ites power to heip ídentify and prepare students for positions in the iabor force (Spring; 1976), añ not in terms of

 térms. Having long ago adopted a businés̄/industry metaphor for thiaking 7 about educational probleme (Callāhān, 1962), we arē inclined to think in terms of "managing" change in the schools and imposing top-down structural reorgañ izations: But just as we may be learning some lessons in our large corporations about how to implove working conditions by giving workers a larger emotional and intellectual stake in their work; so we may need to learn some similar lessgns for dealing with teachers and the conditions of their work.

Proposals for change in education; come thick and fast these days, yet there seemis to be no independent or quasi-independent agency to analyze their merit. An agency that is as free as possible from shifting political winds and entrenched bureaucratic obstaclcs is needed to conduct policy research in education. In examining proposals to deal with current and future shortages of mathematics teachers, for example, such an agency would be able to enlist the cooperation of teachers (those in training, those now teaching; those thinking of ieaving those who have left) in studying the problem; rather than relying on the secondhand views of experts and officials as voiced through comittee hearings; commssioned papers; and conferences. An agency insulated
from the various vested interests in mathematics education, our own included; could study the proposals in the ilght of their short- and long-term effects; and not simply in terms of their political feasibility.

Recruitment and Retention. The emphasis in this discussion on the need to change the circumstances and conditions of school mathematics teaching in the United States today should in no way be interpreted as a denial of the importance of improving saiariess in the profession. We wish to underacore our endorsement of àtemptē to rāsé those salaries to a level that will attract
 sufficient to solve the root problem of fäling to take mathematics teaching seriously; we do not mean to imply that higher salaries are unnecesaany.

Whatever is done to retain or retrain mathematices teachers; the iong-term solution to the crisix in mathematics teaching cails for a continuous supply of young; talented people entering the fleld. We view the dramatic deciine in thè number of entrantes to mathematices tēaching āe à fà more serious problem
 not been attracting enough capable young people. Lortie (1975; pp; 86-87) reports that the majority of male beginning teachers have no intention of staying in classroom teaching for their entire career and that the majority of women beginaing teachers expect to leave the classroom within 5 years; although most expect to retum after raising children. "In some fields the beginner may start at a relatively low income but, with success move into a series of significantly higher earning positions" (Lortie, 1975, p. 82). Such positions differ in status, and such occupations may be termed "staged." as Lortie observes, "classroom teaching is notably unstaged" (p. 82).

One role that research might play in addressing the long-term problem of improving teaching is to explore the effectiveness of various ways of making clasaroom teaching more staged. A concept that had been proposed recently is that of "Certified Master Teacher"-analogous to Certified Public Accountantto be awarded to teachers who have passed a rigorous examination. Not oniy are there poilicy implications of such a move that require systematic study, but thére are also opportunitiès for inquiry into the knowledge and akill possēsed by the most talented members of the profession; as well as the levels of knowledge and skill deemed important by various constituencies; to provide a foundation for the construction of comprehensive examinations.

Researchers might also examine systematically various programs thāt appear to be attracting and retaining talented teachers of mathematics. What are factors that influence such teachers to enter and remain in thé profēsion? What factors influence them to leave? What role does the school administration--the principal; in particular-play in retention? what role do a teacher's peers play in a dection to leave mathematics teaching?

Evication and Professional Development. Another issue concerning the long-term health of mathematics teaching 1s the nature of the training that teachers receive. Some institutions are finding that, paradoxically, adding a fifth year to a 4-year preservice teacher education program attracts rather than scares off bright students (Benderson, 1982). Apparentiy, such students value a program that might offer them a higher level of preparation for
teaching. The challenge to mathematics éducators, theng is to design prógrans that will offér a higher level of preparation. That chailenge is accentuated by the need to anticipate in those programs how computers wili change both the content and the pedagogy of school mathematics.

The preparation of teacheres of mathematics requires a knowledge of both mathematics and pedagogy, but few people have ever been satisfted with the balance between the two or with the extent of either. The level of preparation now is probabiy as high as it has ēver been, but expectations have risen and so the level is perceived as being lower than it should be. In asking that the quality of preparation be fmproved, one should not make the mistake of pitting subject matter againgt pedagogy; they "are inextricābly intertwined and should always be thought about that way . The híghiy polarized argument that sets courses in teaching against courses in the disciplines is overdone on both sidés" (Howe; 1982; p. 28).

Test score evidence indicatē that, on the average; education as a college major does not attract students of higa academic ability. it is not ciear whether the relative deficit in academic ability is greater in mathematics eáucation thar in other fields of education. It would be helpful to have more information on programs and activities that have been auccesseful in recruiting and preparing students who are strong in wathematical abilities and commitment to teaching. At a recent conference on teacher education; someone suggested that education need not draw the most talented students; implying that such students would quicikly become disenchanted with school teaching. It that what people want for the profession?

In seeking to reliēve à teachèr shortāe, policymakérs and administrators should not make the error of assuming that èveryone currently teaching mathematics should be retained there at all costs; On the contrary, one means of demonstrating a seriousness about mathematics teaching would be to find mechanisms to assist the less competent and the uncommitted to leave teaching for other pastures. One test of a profession's vitality ts how it deals with dead wood.

The Mathematics Teacher As Curriculum Developer, Researcher, and Mathematician. The professional life of mathematics teachers needs to become more rewarding: Again, perhaps paradoxically, that might be done by expecting teachers to do more-not more paperwork or test administration; but expecting; and assisting, the mathematics teacher to be developer of curriculum; a researcher, and a mathematician.

Earlier in our discussion, 'we addressed the prevailing mythoiogy in the United States that teachers are not viewed, and do not view themselves; as curriculum developers. We were not contending that no teachers fn this country are doing curriculum development work. We know of severai instances in which they are, but we do. not know of any research on the extent and éffects of such activities. Teacher centers of various types offer a vehicie for curriculum development work, and one can envision summer insititutespatterned perhaps after the National Science Foundation Insititutes of two decades ago-in which mathematics teachers would get training and assistance In inftiating the collaborative work needed to transform the current school mathematice curriculum.

A special need is fō curricuium material to accompany and support the growing presence of microcomputers in mathematics ciassrooms. í computers are to be incorporated into mathematics instruction in more than a superficial way; mathematics teachers will hā̄e to devis̄e instructional material that they themselves can use.

Teachers aīso need to become coliaborators in research:
Rēēearch in mathematics education has increasingiy been moving out into the classion. This has been; in general; à healthy move: It would be bettē; however; if teachērs were working more closely with reseārchers iñ formulating their problems and interpreting their findings and not simpiy in helping them gather data. The teachers would benefit, with respect. to both their professional attitudes and their effectiveness; and so would the researchers. (K1lpatrick, 1981, p. 27)

Just as important, the teacher needs to be a mathematician:

* Too few teachers are members of the mathematicai commuity, even in the definable sense of being_members of professional associations of mathematiciañ....It is distressing how many [teachers] gay; of course; I aminot a mathematiciañ" It is surely not reasonable to teach swiming and not be a swimmer; or a language and not be abie t̄o speāk ít. Why then is it reasonabie to teach. mathematics and not be a mathematiciant (Fletcher, 1975, p. 212)

Fletcher argues that the cowing of the computer has changed the watheratics comunity so that it is no ionger composed primarily of teachers and that schooiteachers need to be acquainted with how other mathematicians today use mathematics. He cites programs"in England in which teachers visit industries; industriāists visit schools; pupils get experience in factoriess and tēachers iñ traiūing work $\bar{a} \bar{s}$ mathematicians in industry. We need iñ this country some serious investigations into how mathematics teachers might be brought-osay; as a summer employment experience-into places where they can see mathematics being used and use it themsenves-

The Conditions of Mathematics Teaching. Teacher; curriculum developer; researcher, mathematician-how can one reasonably. expect the already overburdened and dispirited wathematics teacher to take on additional burdens and responsibilities, professiomaily chaliqnging though they might be? The answer is that one cannot as long as the conditions of mathematics teaching remain as they gixe That is what we mean by taking mathematics teaching $\bar{s} \bar{r} i o u s l y$. If one does that; then one must; $\bar{a} b \overline{\mathrm{~b}} \overline{\mathrm{a}} \overline{\mathrm{a}} 1 \mathrm{l}$, work to change the sonditions and the circumstances of māthematics tēachin̄ todaȳ.
If society were to take seriously the job of teaching in
the lower schools and; particularly; if teachers were to
be eñouraged to inquire into the subsenance of what thē
are teaching; or into the nature of \bar{s} iudent \bar{s} with whom
they work; or into the learaing process itself; it is
apparent that a teaching load of more than twelve to
fifteen hours per week could not be condoned. . . As iong as
we sanction teaching loads as burdensome as thọse which
ordinarily prevail; our ingenuous talk of improving
instruction will retain a faint touch of insincerity. No
one, not even the most dedicated and brilliant; can
effectively individualize instruction; systematically
analyze his own teaching, diagnose learning difficulties;
and maintain a vigorous pedagogical and substantive
scholarship on a spare-time basis. (Schaefer; 1967, p. 6̣1)

At least some assistance might be offered to the mathematics teacher by providing aides to handie the routine management tasks that have come to
 obligation on the part of its youth, service in education might be an alternative to service in the military, the health services; or conservation. The national service obligation might also provide an opportunity to recruit young peoplé into tēaching às à cāreèr.
 because of a vision they have of what teaching is and might be. Mathematics teaching today has become something other than what it was a generation ago; and it no longer looks inviting to enough talented people: All of us bear some responsibility for having made mathematics teaching a iess attractive career than it used to bé, and ail of us need to work to change that situation.

REFERENCES

 curriculum. London: Heinemañ Educāional; 1970.

Rr e; E.G. Research and evaluation in mathematics education. In School Mathematics Study Group; Report of a conference on respon̄ibilitiē for school mathematics in the 70's. Stanford; California: 1970.

Benderson; A. Teacher competence (Focus; Nō 10), Princētō̃; NJ: Educational Testing Service; 1982.

Bernstein, J. Educating the non-scientist. American Scholar; Winter 1982/83. 7-12.

Cajori, \bar{F}. The teaching and history óf mathenatics in the united states. Washington, D.C.: Ü.S. Govenment Printing Office; 1890.

Callahan; R.E. Edūcation and the cūlt of efficiency. Chicago: University of Chicāo Press; 1962:
 Reys; $\bar{R} \cdot E \cdot R e s u i t s$ from the Second Mathematics Assessment of the National Assessment of Educational Progress: Reston; Virginia: National Council of Teachers of Mathematics; 1981.

Dainn; P- Case studies of educational innovarion: IV. Strategies for innovation in education. Paris: Organization for Economic Cooperation and Development; 1973:

DeVotó, B. (Ed.). The portable Māk Twain. New York: Niking Press, 1946.
Editoriai Projects in Education. The American education deskbook: 1982-83. Washington; D.Cन: 1982.

Fey; J.T. Mathematics teaching today: Perspectives from three national surveys. Arithmetic Teacher, 1979a, 27(2), 10-14.

Fey, J.T. Mathematics teaching today: Perspectives from three national surveys: Mathematics Teacher, 1979a, 72; 490-504.

Fletcher, T.J. Is the teacher of mathematics a mathematician or not? Schiftē̄rēihē dēs IDM, 1975, 6, 203-218.

Gazzetta; V- Regents initiatives In State University of New York at Albany; Department of Teacher Education; Proceedings of the symposium on the effects on technology of a vanishing species: Mathematics and science teachers: Albany: State University of New York at Albany; Institute for School Development, 1982.
 mathematics: In National Council of Teachers of Mathematics; A history of mathematics education in the United Statea and Canada (32nd Yearbook of the NCTM): Washington; DiC:: 1970:

Ginn; L: Letter to the editor: Athens (Georgia) Banner-Heraid; 6 January 1983, 6.

Howe, H., II. Improving teaching: Solutions close to the ciassroomCollege Board Review, Fall 1982; 12-15; 28-29.

Howson, $\bar{G} ., \overline{K e i t e l}, \bar{C} ., \overline{\mathrm{K}}$ Kilpātrick, \bar{J}. Curriculum development in mathematics. Cambridge: Cambridge Uaiversity Press, 1981.

Kıipatrick, J. The reasonable ineffectiveness of research in mathematics education. For the Learning of Mathematics, 1981, 2 (2), 22-29.
 Chicago Press, 1975.

Maclure, S. Styles of curriculum development paris: orgañzátion for Economic Comoperation and Development, 1972.

Nationā̄ Acā̄ēmy of Sciencēs National Academy of Engineering. Science and mathematics iñ the schools: Report of a convocation. Wäshington, D.C.: National Acādemy Prēs̄s, 1982.

National Advisory Comittee on Mathematical Education overview and analygis of school mathematics, grades $K-12$. Washington, \bar{D}. \bar{C}-: Conference Board of the Mathematical Sciences; 1975.

National Council of Teachers of Mathematics. An agenda for action: Recommendātions for school mathematics of the 1980s. Reston; Virginia: 1980.

National Committee on Ma thematical Requirements: The reorganization of mathematics in secondary education: Mathematical Association of America; 1923.

Ovsiew, E: Research for Better Schoois, Inco (RBS), United States. In case studies of educational innovation: í At the centrai ievei: Paris: Organization for Economic Co-operation and Development; 1973.

Schāéfer ; R.J. The school às à centèr of inquiry, Nē York: Hāper \& Row, " 1967.

Sells, L.W. The mathematics filter and the education of women and minorities. Paper presented at the meeting of the American Association for the Advancement of Science; Boston; February 1976.

Spring, J. The sorting machine: National educationai poilcy since ig45. New York: McRay; 1976.

Taylor, H.D. Testimony prēsented to the National Commission on Excellence in Education: Unpublished manuscript, 11 March 1982. (Available from National Council of Teachers of Mathematics; 1906 Association Drive, Reston; Virginia 22091).

DISCUSSINN OF
 MATHEMATICS EDUCATION

Antoine Garibaldi, Associate Professor and Chairman of the Department of Education, Xavier University of Loulsiana

Abstract

In "Taking Máthematics Teaching Seriousiy," Jeremy Kípatríck and jím Wilson hā $\bar{v} \bar{e}$ carefūlly rēviewed some of the complex issues surrounding the shortage of mathematics teachers in this country and discussed several of the more popular proposals for the solution of this problem. In addition, they have given some special attention to the nature of the school mathematics curíicuium and how thís curriculum might be amended to meet the demands of tōay 's technoiogicai society.

Given my current position as a department head, i would iike to àd ress my remarks chiefly to how wr recruit more mathematics teachers and comment briefly on the more popular suggestions for alleviating the shortage.
 science téachérs to the téaching proféssion immediately. The thought is à good one; to the extent thàt the mathematics or science graduàē commands à much better starting salary if he or she decides to work in business or industry. But school systems cannot possibly compete with the private sector: Furthermore; differential pay schedules for certain segmegts of the teaching population will encounter considerabie resistance from unions as well $\bar{a} \bar{s}$ from teachers who are not certified in shortage areas but wili have been teaching fō \bar{a} much ionger $\bar{t} \overline{1} \overline{m e}$ than mosit who $\bar{a} \bar{r} \bar{e}$.

Even āsuming thére are no major obstacles to this proposal for diffērential pay, however; it would appeà preferable to focus on an even more

Quaifty is critical to any profession; and the very idea of lowering standards to fill shortages-or distributing additionai resources and benefits to fili the need--is totally unacceptabie. The probiem iles in the fauity assumption that raising the saiaries of mathematics and science teachers wili automatically provide a cadre of talented teachers-teachers as committed to their students ās the éementary teácher who has taught for 10 years and still makē \bar{a} smallér saláry than a beginning máthematics or science secondary teachè:

If differential pay is provided to mathematics or science teachers; school systems will have to ensure that the individuals who take those jobs are fully quaitfied and fuliy dedicated to their work. Schools will also have to be as exacting as industry when it comes to quality; shortage or no; if they are to maintain the necessary standards of teaching excellence.

The issues of quality aiso bear on the proposai to award forgiveable allowances to preservice mathematics and science teachers. School systems, Federal and State departments of education, and colleges of éacation need : ó be surie that thēy are attracting highly qualified men and women bēause they want to be teachers and not because of the financial benefits that will accrue.

Screening out individuais who are not well intentioned is very difficuit; as we all know; but mediocrity; i beineve; wili be the consequence ff we do not. We want and must insist on highiy able and commitéd teachers; even at

It is my belief, too; that we should be wary of giving emergency certificates in large numbers. For the sake of the mathematics and science profession; the teaching profession; and aiso the students who are taught the last thing we want is marginal teachers with no more than the fundamentals of mathematics and science preparing college-bound students for highly technical career underprepared teachers may fly back to the classroom merēy to meet emergency certificate requirements; not so much to be excellent mathematics or science teachers but merely to improve their financial situations.

Another comment, it seems to me; is in order regarding some States which allow mathematics graduates who pass the National Teachers Examination (NTE) to be certified to teach mathematics-or science. Having substantial training in mathematics and being able to pass the NIE does not mean that an individual will be a good teacher. Some requirements should be established for these individuais to take courses in the fundamentais of teaching, some observation
 our intent is to élevate a profession that 18 currenty not taken seriousiy, we should demand no lēss of this category of teacher candidates.

Finaly; we canot treat the problem of mathematics and science teacher shortage in isolation: The entire teaching profession is affected by deciining enrnilments: i think Jeremy's anaiogy-í cail it the fndiana Jones analogy, with the teacher in the bot tom of the pit; and constantiy being pointed at, told what to do; and still paid a marginal and meager salary-is on target: And if I were to take that one step further, I would talk about business and industry as being the "Raiders of the Lost Ark" who seem to be sweeping up ail of the good mathematics and science teachers who are out there.

In ${ }^{1969}$; 36 percent of college students were interested in teaching. In 1979 the figure had dropped to 10 percent. I think the figure now is soméwhère between 3 to 5 percent. Bētween 1975 and 1977, the number of graduatē qualified to teach fell from $243 ; 000$ to $190 ; 000$-a drop of almost 22 percent. And given we know that not all of the students who graduate in education elect to enter the teaching profession, it appears we will need to produce an even larger pool of qualified and certifiable teachers to make up the deficit.

Teacher education needs an image facelift which will have to be accomplished by teachers, the general public; and the press as well. Education will not be improved by constant criticisms of teaching quality and by waving low achiēvement scorē on the front pages of local newspapers. Wheñ educatinn gets the support and respect $1:$ needs and deserves, we are more likely to get a better system of educationg and a teaching profession that more young people will seriously consider as a career.
 creation of a Master of Arts in teaching for those mathematics or science students who go through the stralght discipline program. It seems certain that this would serve to increase the pool of certifiable mathematics and sciencè teachers. At thè same time; I think that school systems will have to be áble to offēr such studentes something worth working very härd à for the additional year beyond their basic college coursework.

Andrew Porter; Professor of Education and Co-Director of the Institute for Research on Teachiag; Míchigan Stāe Univerōity

I think Jeremy and Jim are right in their approach in the sensee that the teacher shortage really has to be viewed ās just one plecee of a much lāgèe concern for the quality of instruction in high school mäthematics, and also à concern for the numbers of people and the types of people who pursue advanced mathematics: They cover an awful lot of ground, and that makes it easy for a discussant. My remarks do not have to be comprehensive. But I want to mention a few things that their paper triggered in my mind.

The first is one that Antoine touched on, too, and it may be a bit of a taboo in research on teaching. I think that estimating the magnitude of the teacher shortage on the one hand and thinking about the adequacy of proposed remedies on the other really requires that we have a fairly detailed understanding of the relationship between teacher knowledge of mathematics and the quality of mathematics instruction that they provide:

I say this is a taboo because think if there were good studies on the matter, I would know them; or \bar{I} would $a t$ least have heard $\bar{a} \overline{b o u t ~ t h e m ; ~} \bar{o} \bar{r} \bar{a} \bar{t}$ least the people that i talked to in preparation for coming to this conference would have known about them. But the area appears to be one that has not received a lot of empirical study. So I guess I call for that kind of study, but I do it with some reservations.

First of all, I think the studies better be well done. Otherwise you will guarantee the result: There will not be any relationship between teacher knowledge of mathematics and the quality of the mathematics instruction that they provide. I cannot believe that. That is an impossibility. So I am not realiy asking whether there is any reiationship, but trying to see if through some empirical stuades we can get é better handie on what the consequences are of dropping some of the certification requirements, for example.

Another thing I would like to mention is that most of the certification requirements are stated in terms of courses completed in higher education；and I am not sure we have a good understanding of what the influence of those courses is on the amount of mathematics knowledge that the students have So I guess I am also calling for research on the adequacies of stating teacher certification standards in terms of coursework as opposed to some other way of demonstrating mathematics knowledge．

Also；it is my understanding that most of the certification is general． You are either certified or not certified to teach mathematics；and yet there are a lot of different kinds of wathematics that can be taught in high school．I wonder if there are places in the country that have experimented with the notion of certification for particular subareas of mathematics and whā their experience would suggest about a more widespread practice of this type．It may even be thà if there were certification for subareas of mathematics，that would ease some of the burden of a shortage，since，though \bar{I} āw not certain of it；i would think that training to become ail things in mathenatics would be more demanding than becoming competent in some specialty．

In ad̃dtion to sychesizing and expanding research on relationships among teacher knowledge of mathematics；pedagogy，and the quality of mathematics instruction，the shortage of wathematics teachers might be better undersiood through comparative research across countries；occupations；and subject matter areas．One wight ask；for example；if there are simizar shortages of
 example．And if there are，are the apparent reasons for the shortages comparable to those in the United States？And what，if anything；is being attempted to remedy them？Also；are there industrialized countries which do not have a shortage？Perhaps Japañ．And if there are such countries；how
 the United States＇problem．

Taking another tack；to what extent are other occupations requiring peoplè with mathematics knowledge experfencing a shortage of trained personnel？To： the extent that the degree of shortage varies across occupations needing similarly trained people；it may be possible to devise better remedies for the teacher shortage based on such information．What characteristict；for example，typify occupations with adequate supplies of mathematically trained people？

亡ooking at other subject mitter areas，are there things about high school mathematics teaching that make it less attractive than teaching other subject mátéer areas？If so；what are they？

While there is a shortage of teachers for mathematics and a handfū of other areas；there are iñ general more than enough teachers ．What explain̄ the profile of shortages and surpiuses across teaching areas？For example， Jeremy and jim cite the women＇s movement as a possible partial explanation of the mathematics teacher shortage and point out that the percent of prospective secondāry mathemātics teachers who are women hās dropped in their university from 80 to 50 percent since 1970．But is this à differentīal effect on mathematics？And；if so；why？

According to a recent NSF report, 68 percent of high school mathematics teàchèrs àe male. While the number of people preparing to teach mathematics has dropped dramatically in the past decade, the decitne fin numbers has, been less dramatic for women. In fact, na completing training has risen from 53 to 59 percent since 1972.

Other data from that same NSF report portray mathematics teaching in a relatively positive ilght. Mathematics is identified by the public as a subject most, fessential for all high school students. We have heard that. before todal. Mathematics teachers report fewer problems in support of their teaching than do teachers of etther social studies or science. The percentage of high school teachers whose primary assignment is mathematics has actually risen from 11 to 18 percent since 1961. At least these limited data do not. support the view that the téaching of mathematics is uniquely unattractive by ' comparisoñ to other subjects.

Jeremy and Jim call for society and the educational community to take the teaching of mathematics seriously, but to what extent is the teaching of mathematics taken less seriously than the teaching of any other subject? A more careful look at this possibility seems in order.

I will skip comments on the notion of raising teachers salariés éxcept to say that I think that would be wonderfui. If it can oniy be done for māthematices teachers, so be it, but if you could do it for all the teachers, that would be èven better.

Under the rubric of curriculiain reform, however, the shortage of high school mathematics teachers is only one piece of a larger problem. The quality of wathematics instruction using existing teachers, and the numbers and types of students who take advanced mathematices, ārē two other related piéces: ímproving the quality of high school mathematice instruction and increasing the numbers of students taking mathematics, éspeciāly winorities and women, would benéfit soctety generaily and might uitimately solve the teacher shortage problem outright.

Jeremy and Jim focused on solutions at the high schooi level, giving considerable àtention to curriculum reform and to teacher training and recruitment. Their discussion ralses a host of interesting research questions.

For example; they advocate curriculum reform using the NCTM "Agenda for. Action" in the 1980 's, which emphasizes problemsolving and applications. I think this is an excellent document, and I highly recomend it. But it is a national agenda, and Jeremy and Jim state that, one, the school board shouid have ultimate responsibility for the curriculum; two, the arena for action $1 \bar{s}$ In the classroom; and three; teachers should have greater autonomy and be more involved in curriculum development.

These statements suggest \bar{a} certain ambivalence about the determinants of school curriculum, an ambivalence which is undoubtedly based on past experfence with mathematics reform. They lead me to ask what the factors are that influence high school mathematics teachers' content decisions? Ase a member of a team of researchers at the Institute for Research on Teaching at

Michigan State, I hā̄e been asking similar questions; but for elementary school teachers. For us, cortent decisions include decisions about how unch time to spend on mathematics; what topics to teach; to what students; and to what standards of achtevement.

In contrast to jeremy, and jim's reports of teacher reaistance we have been surprised to find that even relátively weak school policies concerning mathematices content cān have a marked influence on what is taught. We. consider such school policies as testing; curiticulum objectives; grouping and promotion practicés; textbook adoptions; and professional development.

In judging the strength of a policy we draw on sociological theory. Thus; wés consider the use of rewards and sanctions to give a policy power and attempts to make a policy. authoritative through the use of norms; legal office, expertise, and support of charismatic leaders.

Across several studies; we find elementary school teachers reluctant to take the responsibility for making methematics content decisions. Nevertheless; they are more often than not forced to make these decisions, either because of a lack of authoritative advice from the school hierarchy; or because of conflicting school policies that demand resolution at the clasaroom level. These findings hate caused us to cast the eiementary schooi teacher as a poiftical broker in deciding the content of instruction, sensitive to the messages of content received but operating from their own conceptions of what is appropriate for their students.

Put another way, our research brings into question the claims of teacher autonomy made by the second-grade teacher quoted by Jeremy:. Elementary schooi - teachers do not seem to want total autonomy in deciding what mathematics to teach. They may, however, value autozomy more highiy in deciding on the strategies they will use in delivering that content.
sinilar research for high school mathematics would seem useful, although our results are ciearly not directly transferable. For example, high achool students have greater control over what subjects they will study. At the elementary level, these decisions are largely determined by the teacher. Also; high school teachers are for the most part subject matter, specialists, while elementary school teachers are not. These and other factors may make high school teachers feel more strongiy about controlling the curriculum.

While Jeremy and Jim's paper covers a wealth of issues in curriculum reform and teacher training; two areas that' deserve further attention; at least at this conference, are the possible contributions of advances in cognitive science to fmprovement of mathematics instruction and the appropriate use of technology in the teaching of mathemstics. Actuaily, that got a little bit more attention in the presentation than it did'in the paper, which is appropriate.

But let me taik about cognitive science fust for a second. Advances in cognitive science are providing new insights into the nature of sudent iemrning and thinking. For example, in both mathematics and science; it has been found that students hold misconceptions about basic concepts thet stand
in the way of their learning. Unfortunately, at least in the case of elementary bchool, the students' miscónceptions àe all too frequently shared by the teachers. When these conceptions are identified and directly chalienged, however, student leavning has been grēatly enhanced.

I think there has been this s ism between people who study student learning on the one hand and peopie who worry about research on teaching on the other. I do believe we have got to take à iook at the advances in cognitive science and in thinking about training teachers in research on teaching.

Finally, one possibility that concerns me is that the problems of high school mathematics may have their ofigins in the elementary schools. During the first 8 years of schooi, aif students study at least the mathematics that their teachers deem appropriate for them. From our research with elementary school teachers; we have discovered a great deal of variance in what students study within the same classroom and certainiy from ciassroom to ciassroom:

For far too many students, however, too littie of what is emphasized rélatés to mathematices ās an Important subject matter in its own right. Studentē may be leárining to viéw mathematices às only a basic skill, with an emphasis on mathemaícs litéracy and consumer mathematics. At the same time; we see little attempt on the part of teachers to challenge the social norm structures that operate to guide minoritiès and women āay from mathematics.

During their elementary grades; student attitudes toward mathematics steadily decilne. Stili; mathematics is the sfingle most popular subject for both 9- and 13-year-oids: And; In fact, minority atadents have a more positive attitude toward mathematics than do white students. However; it is open to question whether these attitudes extend beyond mere arithmetic to mathematics as a discipline.

By the end of eighth grade, students with their pareuts and their teachers make a decision as to whether they will go on to take advancei mathematics. This single decision will stay with them for probably the rest of their lives, with implications for the types of colleges they can attend, the college majors available to thein, and uitimately the careers that they can pursue. Cleariy it is in large part the student \bar{s} achievements and attitudes from elementary school mathematics upon which these decisions are based:

Even more pronounced differences exist between college-bound majority and minority students, and in general I think we all agree that too few studentes take advanced mathematics.

Thus when looking at the high schools, one might also ask about mathematics in the elementary schoois. And here the problems are if anything more difficuit. The teachers are not mathematics spectaifsts. As Jeremy and Ji"̈ hint in their paper, the shortage of quailified mathematics teachers in the élementary schools may be much more profound than the visible shortage in high ${ }^{\circ}$ schools.

Jack Easiey, Professor of Teacher Education Uquersity of Illiñis, Ū̄añ-Champaign

I just want to say that I really enjoyed studying two drafts of the paper by Jeremy and Jim; and I wili go back and study the last one some more now i an trying to arrive at an estimate of how much i agree with it and how much i disagree with it.

It reminds me of a conference some time ago; about 10. years ago; iñ which Plaget was one of the central figures; and a colleague of mine remarked to Piaget; rather obstreperousiy perhaps; "The atructures that you are studying; Professor Piaget, really account for 1 ess than 10 percent of the field of human cognition."

And Piaget, with some umbrage; said, "How do you compute that percentage?"
But the next day Plaget said in his speech; "Of course; the structures which 1 am studying account for less than 10 percent of the field of human cognition"-with a straight face-

So I don't know how you compute that.
It reminds me aiso that I an feeling very reminiscent because I met Jim and J̄eremy when theg were working for SMSG and I was working for USCIM. And these two mathematics programs considered each other fríendy rivais. i remember \bar{a} meeting in which Ed Begle and Max Beavermari squared off in different corners of the room and went after each other.

George poleo was at that meeting; and he got up afterward and said in an equally enigmatic way; Max; I agree with 95 percenţ of what you're sayingo"

And í think that is about the inght percentage; i agree with Jeremy and Jim about 95 percent. That is the last quantitative thing I am going to say.

I would like to tell you a few anecdotes. Which highifgh the area where there uight be some disagreement and perhaps even an area that hasn't really been touched on or explored yet whin we might have some agreement about.

I do think that they are right that taking mathematics teaching aeriously, or the failure to do that=che devaluation of mathematics teaching; and I would add the devaluation of mathematics thinking by students; the notion that mathematics has to be taught to students and cannot be reinvented by them themaelvesonthat is one of the problems; one of the myths; if you ifke; that we need to reconsider.

Another myth I think we need to reconsider is that we can be happy with the curriculum that has been developed out of NSF projects; for example- I think a ilttle in the way of mathematical criticism may be needed, but there may also need to be some sociai questions asked about whether society-school boards, teachers, parents, and so forth-wouldn't préfér for their own reasons and to exercise their own prerogatives to have a somewhat different curriculum than that.

Another myth want to touch on a inttie bit is the role of teacher knowledge in teaching. To what extent is it essentiai that the teacher know the subject that is being studied by the students at the moment?

I would like to begin with à very brief account of something that Amy Grebe; one of our graduate students at Illinois, and I did. We did this work growing out of some videotapes which had been collected some years ago out of an NiE project. We reexamined the tapes; and we discovered an interesting phenomenon, that in kindergarten and in second grade; where we began the study; we could find in most ciassrooms-certainly the ones that we sampled; and later in other ciassrooms--that there were individual pupils who were operating quite independently of the teacher in thinking through things mathematically. They could be called mathematical mavericks. And the interesting and puzzling and disturbing thing about that is that all of them were white; middle-class male children. So we called them the pale male māthemātics mā̄ēricks.

And we began to wonder: What happens? Why aren't thère some female mathematics mavericks and some minority mathematics maverickg? And we began to look at what happens to children in primary grades who do some indepeñent thinking about mathematics; for example; who figure out how to subtract starting on the left instead of the right the way the teacher teils them; or whatever: That is a ciassic.

We began to discover what happened to them, and the teachers began to explain to us that they were convinced that the most creative work in mathematics by students later on in elementary school came from those who had thoroughly mastered the algorithms in the beginning grades-how to add, subtract, and so forth--and that they knew it was expected by National social and local mores that minorities and giris in particular would have to be given some help and brought up to standard, to minimal competency. But if there is \bar{a} boy who is outside of those targeted groups; and he seems to be doing ail right, well, everybody knows he will be all right so we just let him go, and he may become an inventor or something.

So the white middle-clās̄ boys who took thāt approach seemed to gè āway without the requirement of minimal competency on mathematical skills défined às rigid procedures which had to be memorized and caried out.

That, you see, iliustrates the point that teachers trying to carry out a mandate from above interpret it and apply it as they see it, looking up from the bottom of the pit, and they may in fact be undermining the intent for which these mandates for equaitty of educationai opportunity were created.

It also arises because of their own view of mathematics as something that is arbitrary, that has to be memorized; it cannot be invented by the child himself or herself. And I would certainly second the various remarks that

- The next anecdote Z would like to tell concerns a trip that my wife and I made to Japañ. My wife speaks Japanese; I doñ't But sitting together with her for 4 months in a Japanese elementary school; i was able tó iearn a iot-
both of us learned a iót This was a very fortunate location thát we found.
 either shopkeepers or temporary empioyees. I don't think any of them had these famous tenured positions with Sony or Toyota. Some 60 or 70 percent of the children had some form of welfare or governent support of some kind.

There were 40 pupils per ciass. But the school cinate was ouperb. The teachers and the students had regular breaks; 10 -minute breaks; 20-minute breaks; five or six breaks during the day, when everybody is let out and each can 80 and do what he wants. Teachers go get à cup of tea or coffee; and the children run around and go see their friends; and the children with responsibilities for other children go check up on those; and so forth-kind of a lovely bpirit; like sumer cāp; was thé feeling we got.

What did they do in mathematics classes? The teachers gave these children chailenging; difficuit probiems to work ō̄ My wife; Eifzabeth; and i invited some filends from the University of Tokyo to come and see this and interpret $1 t^{\prime}$ for ū; and they $\bar{a} 11$ said to the teacher; "Why don't you give them more help with these problems? Look, they struggled for a half-hour to try to figure how in the world you would use a protractor which ouly measures up to 180° degrees to measure an angle which is larger than 180 degrees; and you didn't tell them about the dynamic concept of an angle that gets bigger and bigger and bigger. Why didn't you just show it to them or use a Japanese fanp"

The teacher said, "That would make it too easy for them. We want something for them to struggle with because they need to learn to really try hard and persist, and that is more important than actuaily geeing that everybody gets the idea, because tomorrow we are going to do something different."

Indeed, they did change: They went very slowly and gave lote of time and encouragement and let children teach each öther: Forty children in a class meant four to geven children in a group. And in a group they worked. These are hetarogeneous groups. There's a bright child in every one-

So the children are teaching each other; and the teacher is a master of céremoniés. And the teacher may have been à mathematice major in college or mā not=-iay have been a home economics major or something else. But the teacher nēver gave them very much in the way of mathematical instruction. Instead; the teachers taught the children how to behave, how to participate in a group discussion; how to share ideas and ifsten as weil as speak; how not to तominate the discussion; how to take turns-ail of these thinga: The teachers were excelient masters of ceremonies. In teaching these mathemátics classes;
 of mathematics. They almost seemed, like the teacher I described; to hold it back and keep it away from the children and let the children struggle with it themselves. Testwise; these children were cieariy way above levels of American schools we are familiar with:

I fust want to tell you one more anecdote.

Coming back after this kind of experience; Elizabeth and I and some graduate students decided we should approach American teachers. And we 12 teachers in ilitnois who agreed that in primary school they had some probiems in teaching mathematices and they would itike to have some heip. So we saíd, "Aili right, we wili heip you with your probiems. And we have just had a lot of interresting ídeas from Japan and other piaces, and we will try to bring these to you as resources which you can use or not use according to the way you seè it."

Six of these teachers were in inner-city schools in Chicago. One of them, a third-grade teacher; had this experience-and I have time to give you only one teacher's experience: They were all different.

This teacher said; "One of my big problems is that itve been teaching third grade fir 10 years in inner-city schools in Chicago; and inave never had a class of third graders who came up to grade level on the problemsolving part of the standardized test. I can get them up to grade level on computātion and concepts̄; but not on problemsolving."

So we said, "Well, lets look at that."
So we looked at some previous tests; and we looked at the textbook; and we noticed that the textbook story problems are ail at the ends of the sections inat deal with computations: So they are a chance to apply-this is what Wilson and Kilpatrick have described-the computation skills you have learned.

But on the standardized tests you have a mixture. They are not all the same kinds of skills grouped together; so you cannot say, "Now this is a multiplication section, so I'm going to multiply ail of these." In that case, you see, you wouldn't need to read the problem. You just find the numbers and multiply them. The children knew that very well, and that is what they were doing in this teacher's classroom.

As soon às she saw that, she said, "Oh; i see the probiem. it never dawned on me before. What can il do àbout it?"

We said, "Let's make some new problems."
So we got problems from Japan and problems we sort of rē̄ised from standardized tests and other kinds of problems, and we just kept feeding this teacher challenging problems. When we gave her problems that required division and they hadn't studied division yet, she said; "We can't use this."
i sàd, "Go ahead; try it. See what they do with it."
And they did fine. They sald they multiplied, but they got the right ān̄̄wè.

She learned one othér important thing, thāt hèr planning uēually called for doing about 8 or 10 or 12 story problems in a period; but if you let them discuss them, you'li only get one or two done because the children will have ali kinds of ideas that you never dreamed of And if you really allow that discussion and aliow them to teach each other and criticize each other; then something wili happen.

She sald, "I see that's a good idea because that's what they need to bé doing when they are taking the standardizē tests. They need tō be díscussing it themeelves silently and thinking. "What is this about? Why should $\overline{1}$ multiply? Why should I sübtract?"

In short; it seems to me that sometimes, particularly in these areas of the primary school curriculum; what is needed is not so much subject-matter competence as some new insights about the way children can iearn mathematics; can study mathematics themselves; and that this does not require a radical
 use algorithms. Turning it around a little the other way; the japanese children invented their own algorithms. Instead of memorizing an algorithm in order to apply it; they tackied story problems and then invented the algorithms to do them:

I would offer that, for whatever it is worth; a great deal can be accompifshed by turaing things around within the curinculum that exists.

OPEN DISCUSSION

DR- SHULMAN: The kind of instruction that I hear Jack Easley calling for in the teaching of mathematics seems very díferent, at least at first blush, from the kind of direct instruction or active teaching that the literature of research on teaching seems $\overline{\text { to }}$ be cailing foŕ. Ād Tom Good has witten many such studies arguing that direct instruction is the way mathematice ought to bé taught, not the way you àre suggesting. Do you two want to fight about that; or does someone want to comment on why they ought to or ought not toz I think this is a fundamentai question about how mathematics ought to be taught and is potentially not a trivial disagreement.

DR. RILPATRICK: I think this is probably the key curriculum issue in mathematics education. The January is̄ue of the Journal for Rēēarch in Mathemptice trdicegtion caririē an articlé by Bob Gayne in which he essentially argues that you must have automaticity of skills before you can proceed further in understanding mathematics.

That article has been received with considerable consternation by a number of mathematics educators; illustrating anew the kind of a split in perspectives that exists within the profession between those people who feel= and I think wany classroom teachers are among this number-that you must have the automatic response before you can go further and those who do not. It is one of the reasons our curriculum looks the way it does.

But I think there $1 \bar{s}$ a large cadre of people who would be more symathetic with the point of view expressed by Jack.

DR. SHULMAN: Ā the risk of putting you on the spot, Tow Good; is there a necessary contradıction between the work that you and Doug Grouws, among others, have been doing on the need for much more highiy structured active teaching, às you call it, and the kind of teaching that jack is proposing, and thāt Jéremy seemes to maintain comē intuitiv̄ely to many mathematics tēachers?
$\overline{\mathrm{D}}$. $\overline{\mathrm{G} O O D}$ (Thomas Good, University of Missouri): $\overline{\text { I }}$ think the contradiction is more apparent than real when you get into the dyamics. For example, I would never argue that the role of the teacher would be to do the information processing or thinking for a student. I think that the processes that Jack was describing are the sorts of things you can get either through an inductive or à deductive approach, whether it's ied by student discussion or through a teacher, depending upon the quaility of those particular pieces.

That 1s, I think that the teachers; through careful modeiling, through cāreful demonstrations, through challenging examples, through high standards, through high expectations, can create a sense of curiosity and interest that hēps students to rāise questions: What are the phenomena that am examining? What question am 1 trying to addrēs̄? How might I reexamine the pleces so that I can come up with another solution or another way of looking at it?

I think the search for patterns and solutions and the view of mathematics as discovery and a system of looking and thinking about phenomena can be taught, as weil as be learned through discovery and other exercises:
 simply a statement of how mathematics ought to be taught. it refiects empirical inquify describing how more and less effective teachers différ in their behavior.

I think a kē élement of that differentiation between teachers who aree getting achievement gains and those who are not is the abijity to focus upon meaningful conceptualization: We find, for example, that teachers who are getting achievement gains spend much more time on development, taiking about ideas, doing mentai computation, doing estimates, and doing verbai prōiemsoiving ; than teachers who do not get achievement gains.

Whether these things are occurling in student-led groups or because of a
 important in hèping kids dēvelop more significānt; fullēr concētualizātion is placing qualitative deāands on studentes and the way in which student progress is monitored aṇd reacted to ultimately, particularly if misconceptions occur:

DR. EASIEY: I think I woutd agree with that 95 percent.
I think what might be left out is that we have a lot of teachers in our schools (who have a lot of students in their classes) who are nowhere near being prepared to do direct teaching; that 18 ; to do what Tom has just dēscribed. But thèy are cāpablè of doing it the wāy I dēscribed. And if thàt
 teaching; so be it.

I could give you anecdotes which convince we that this approach needs to be looked at. It is something that has not been tried enough to show up in the studfes of correiations that have been worked out.

DR. GOOD: A quick question. I really do not want to get into a polemical diacussion because I am not really trying to advocate looking at teachers as being the only source of information in the classroom and the way to 80 , although I think they are an important source.

The question that i would raise is basicaily: when we have students teaching other students, is it not problematic it terms of the motivation, the seriousness, and the interest with which they will play those roles? I think to be àble to articulatè a positive learning environment will take an incredible type of tēachē who hā̄ thé $\bar{s} k i l l$ to communicate beilefs, $\bar{n} \overline{o r m s}$, and preferences that support this type of learning.

I wouid gather that in Japan there is a great deal of support from parents and society for the idea that mathematical iearning is important; and it is expected the kids should participate fuily in that:

Here, unfortunately, in many classrooms those antecedent conditions do not exist- I would argue that one thing we need to consider cärefully is the lack of societal support and interest making it very much more problematic in our society to have that sort of active inquiry among students.

DR. EASLEY: I would say we learned a lot from the school in Japan: We observed and wrote up over a hundred mathematics lessons in that elementary school. We learned a lot about the things that teachers did to overcome these problems. They did exist, but they kept them to a very bare minimum by such clever devices as; for example, taking a general poll of the whole class when you have had reports from all the groups on what they have decided to do about this problem, and there is à iot of difference. Then, if you discover that the poll does not add up to the number of children present, you seek out the nonvoting children and find out why they did not vote. The teacher has to be very alert for the psychic dropouts, as Marshāll Mciuhan cālled them.

DR. AuSTIN: My name is Gwendoiyn Austin and i'm with the Department of Education. I have two issues in would iike to address because I notice on the program we have quite à fē colleges of education, departments, and so fōrth; reprēented.

One of the concerns that inave to the lack of articuiation in many Institutions of higher education between the coileges and departments of education and the other disciplines. For exsmplè, the chemistry department; or the physics department. Private industry will actively go down to these departmentē and woo the graduatē iño their employment. What efforts have been made by your colleges of education to go down there and meet with those chemistry and physics majors and so forth to try to get them into the teaching profession; and perhaps following up on the second speaker's concept of a MAT or fifth-year program in those disciplines?

The other concern-one that Dr. Bell mentioned and Dr. Wilson alluded, to-involves the use of microcomputers in the schools. Your State departments of education and your local education agencies have gotten on the bandwagon and are training teachers and students in computer literacy. How many of your coileges of teacher education, not your business schools; are providing future teachers with training to keep pace with this trend?

Those $\bar{a} r \bar{e}$ the two $1 \bar{s} \bar{s} u \bar{s}$ thà I am concerned about.

DR. WILSON: For the lāst 9 years, as part of the training of every secondary teacher, we have required $\bar{a} t$ leāst one course in instructional computing: Some of them are now taking three coursē; a threēcourse sequence iñ instructional computing; and some are taking a course in programing in the statistics department on top of that. So there is considerable work being done in the area.

Fifteen years ago when i went to the University of Georgia, añ ly years ago when I took over as department head; we had a very good dialogue going with the mathematics department: in fact; that has been \bar{a} very productive fñtérchange. We are not on their staff; they are not on our staff

We teach 10 courses à year over there-"we" being the mathematics education faculty-mand they do things in our department. They teach courses in our department occāsionally, not $\bar{a} \bar{s}$ often $\overline{\operatorname{an}} \bar{s}$ we teach in theirs. They are on our comittees. We serve on some of thérir comittees. Ass inave said; a very productive interchange. If there is anything to be"said of our interaction with industry; it is that we have got too many of them coming in and hiring mathematics education graduates immediately.

We had, for example; \bar{a} very good student defend her doctoral dissertation last week on a Thursday, and on Monday she started work for Southern Beil. It's happening at all levels and for all degrees. They are looking at us because we have; I think, strong mathematics backgrounds and strong interpersonal skills built into this.

Let me say also-in fact, \bar{I} would make a fiat statement-it is not the responsibility of mathematics teachers alone to deal with computer literacy, if at ail. We want to deal with the use of the computers in teaching mathematics.

In the education of prospective secondary teachers, we expect them to deal with a faculty member through at least one course on the problems of mathematics curriculum. I'm not entirely happy with thatg but it is a curriculum experience as a part of their training.

We also have a course on mathematics methods which is field-based. By the time they get out of that course, they know what a school classroom looks ifke. And the faculty members ilke Kilpatrick who teach that course also know what a school looks like, beaause they go out there and work in it.

These are components of what íthink is important in a program.
DR. ALDRIDGE: As I hāe heard all the comments this afternoon, most of them have been directed toward the teacher or the student, and it seems to me thà Joe Schwab may have been right about the corruption of education by psychology. Certaln̄y we want to have good people, and the tralning of those peoplè $\bar{a} \bar{s}$ individuals istvery, very important: But the fact of the matter is schooling is a kind of a sociological phenomenon; atit I think when Dr: Porter mentioned he was using some sociological variables; it buoyed me a ifttle bit.

But I'm still wondering about the degree to which, in ail of these
 as a unt that needs to be thought of as the setting. If curiculum is going to improve, if mathematics is going to improve, if those teachers are going to become involved, then certainly we need to be dealing with the school as the unfít.
 concern in our paper. We did discuss it. In particular, we were interested in some of the recent work on principals ass instructional leaders and how principals might get curiculum development work going with other kinde of teacher activities.

But we are concerned with the school as a setting because obviousiy it's. the conditions . F teaching in that school that are going to impinge heavily upon the téacher's decision whether to stay in teaching or to leave.

DR- WIISON: I'Il make it brief. It connects with the Secretary's remarks this morning about the certified master teacher; and this is analogous to the CPA. It's one that several of us have talked about in mathematics educationi. How do we provide a mechauism for removing or allowing people to exit from the profession who should be removed or allowed to leave? I think that goes along with any long-term consideration of improving"the profession.

One other thifg when Betty taiked this morning with dismay of the charts which showed the opportunities for studying science and mathematics are iower now than they have been in the past, her comment wase ithink it was inadvertent-""...Where will our scientists and engiweers come from?"

And my thought was, "Where wili our science and mathematics teachers come from? ${ }^{\circ}$

DR: SHULMAN: Lét me conciude with a couple of comments. First of all, a reminder. Without knowing it'; all of you were newsmakers today, and that newsmaking will become public on public television tonight at $7: 30$ on the MacNeil-Lehrè Report, which will be devoted to a discussion of the crisis in the shortage of mathematics and science teachers.

Ernest Boyer añ jāil Sagan and Terrel Beil will be discussing those matters-unfortunately, not informed by all iae wisdom that was exchanged here today, but we will watch that and think of how much bettē they could have done if they had been hère to heà what we had to say.

Tomorrow we are going to make a transition from a concern with where we are going to find people to teach; and what do we know about the teaching of. science and mathematics-the two major topics addressed today-to questions of the education of teachers for mathematics and science, and the role of teacher education programs in institutions in that activity.

In general \bar{I} think much of our earlier discussion has been dnoinated by a metaphor, if you wili, of teaching as telling; and that somehow t. more you have to teil, the more you will be able to teach; and therefore the more kids wili be ābie to iearn.

In the outstanding work that both have done, though they may not agree on the particulars of teaching, í think that neither Tom Good nor Jack Easley would view teaching as lots of telingg, and better teaching as more telling.

I think you have to conjure up what if might cail the prototypical episode or encounter in a mathematics or science cilassroom a teacher tells or demonstratē or explains something to a classroom fuil of kids. The teling goes on for a little while; the blackboard is used; perhaps some models are used. Maybe the kids play with some manipulatives. Then the teacher proceeds to ask a question which ought to be answerable by a kid who understands what he has just been told.
if the teacher is very iucky, she gets a right answer. If she is moderately lucky, she gets a wrong answer. And if she is as lucky as most of

Now she īe confronted with a dilemma. What do you do next? What doesn't the kid know? What is̄'t understood?

Drawing upon the six courses past cāculū thāt she hā tāken, she says, "Sure' you dó. Try" And the kidis adamant and saȳ, "I don't know."

Finaliy; in some desperation, she turns to another child who reliably does know. She responds and they move on :

I am áfraid that a lot of what goes on in chassrooms has that character. And what I want you to be thinking about is: What are the things that have to be in the heads of teachers, in addition to profound wathematical understanding; and in addition to general principlés of classroom management and planning; that will make it fossible for them to understand what it is that those chlldren do not understand and have a set of options available that go beyond teiling them the same thing over againg usuaily in a louder voice, the way we tend to try to get through to somebody who does not speak our language when we are in à forefgn country.

This is \bar{s} difficult question; but I think it may get to the heart of what we mean by improved education of teachers in mathematics and science: ít may, If we keep thāt kind of image in our minds; help us go beyond recommendations that simply call for more mathematics ān science for mathematics and science teachers.

A second thing i would ask you to think about-and it is related-has to do with a panei which is at the moment touring the country for the Association of American Medical Colleges. it is attempting to gather data as a basis for reformulating the medical. curriculum in this country. Their preifminary report suggests that the problem with the medical curriculum is that medical
students are taught too much of the wroug stuff and nothing of the stuff they need to practice medicine intelifgenty and humanely: The revolutionary character of this panel thus far is that they are not employing the typteal curricular repair strategy, which is, "What do we have to add to the preparation curiculum to make it better?"

I am optimistic about their strategy, and so I recommend it for your thinking for tomorrow as well-not simply; "What do we have to add to the curriculum for teachers in order to wake it better? ${ }^{n}$ but; "How wight we think through a reformation of that curriculum in inght of these prototypical notions of what teaching is like?"

That would begin to scive some of the problems we have been addressing.

SESSION V
 TEACHER EDUCATION: CURRENT CONDITIONS

PREPARATION OF TEACHERS: MYTHS AND REÁCities
An̄e Fiowers, Deañ, School of Education; Georgia Southern College;
and
President-Elect, The American Association of Colleges
for Teacher Education

During the past several months; one had oniy to pick up a newspaper or journal to find some reference to the growing need for more and better science and mathematics instruction in our schoois. The situation today is not unifke that we experienced some 25 years ago when we raced with the Soviet Union in attempts to explore sparc. The major difference is that we are facing a crisis that to a great extent results from our Nation's technological success.

Advancē̄ in $\bar{s} c i e \bar{n} c \bar{e}$, medicine, $\bar{a} \bar{n}$ engineéring have produced the phenomeñon of technological obsolescence; knowledge is out-of-date before it can be inoorporated into the curiculum of our Nation's schools: This phenomenon presents challenges for school systems for acientific and mathematical ifteracy far different from the demands of previous pearso In the wonderland in which we ilve; we find ourseives very much iike Alice in her Wonderland ruñing just to stay in the same place. And as we have for every other major crisis that has confronted our society; we are again turning to our educational system for a major initiative in seeking resolution to the problem.

The shortage of qualified mathematics and science teachers is identified by leaders in the edfication and business communities and by local; State; and Federal governing bodies as a critical problem and a national concein. The problem is even'more serious than many realize.: What confronts us is not merely an undersupply of technologically proficient and knowledgeable teachersj but a dwinding supply of qualified teachers that is compounded by the absence of incentives to attract young people to the teaching profession.

A solution to the teacher supply-demand imbalance for mathematics and science will not be found without facing the broader problems challenging the schools, the profession, and teacher education. Relying on an issue-specific panacea, ignoring the complexities and interrelationghips of education in this country, Will only serve to mask serious underlying problems that cFy for resolution. Without a doubt, it is time to diapei the myths and to identify and disčuss the realíties of our educátional system: Then, and oniy then, can we move to énact appropriate reforms.

The dilemma we face has developed over a period of yearis. It has been nourished by apathy, disinterest, and neglect by Government; schools; colleges and universitiés; the military, and our citizenry. The price we are paying is the failure to maintain general scientific and mathematical literacy among the
population at large. It is time to face the issue squarely, to rethink our priorities; and to reconceptualize our practices. It is time to change and for change. And $I_{\text {; }}$ for one; applaud the National Institute of Education for providing a forum for our deliberations.

THE MYTHS AND THE REALITIES

The theme of this conference is "Teacher Shortage in Science and Mathematica: Myths, Realities, and Research." In addressing that theme, \bar{I} would like to frame my remarks around elght mythe cominoniy associated with teacher education, while reallzing that in each myth, there is some reaility and that in each reality; there $1 \bar{s}$ some myth.

Myth: The Schoois are Failing

Reality: No other Nation gerves so large or varted a student popuiation $\bar{a} \bar{s}$ does this country, with more young people attending schoolr graduating from high school; and matriculating to postsecondary institutions.

Lawrence Cremin (Note i) caila the foliowing figures "extraordinary statistics:" 96 percent of our 16-year-oids; 90 percent of our 17-year-olde (the year after compulsory school attendance ends), and 83 perceit of our 18 . year-olds are fin school. Elghty percent of our youth graduate from high school, and 65 to 70 percent go on to some sort of postecondary education.
 approaches; goals; financial resources; and "confidence in our ability to conduct a unfversal school system;" we are providing a remarkably successful education program.

Parallel to these "extraordinary" numbers, the schools have provided access for all young people in the society regardless of race, sex, or social ciass. During the 1970 's the proportion of high school graduates amons the biack is- $\overline{\text { to }} 24$-year-oid population increased from 60 to 70 percent, while for the first time, total enroilment of females in higher education grew faster than that of males (Dearman and Pliski, 1982; p. 130; 133). Women in increasIng numberis attended sachools of lāw, busines̄s, dentistry, and mediciñe. For the first time, last fall's enrollment of women outnumbered men in the Michigan State University Medical School.

During the 1970's, the schoois aiso heiped in the assimilation of 12 miliion immigrants-the largest wave of imigrants of any decade in American history (Hodgkinson, 1982). The schools played a key role in assimilating thèe people into American socièty at the same time that the schools were mains treaming increasing numbers of handicapped children into regular. classrooms; with a majority of ail handicapped childreen spending fewer than 10 hours per week in special education programs: The years between 1970 and 1980 were aiso noteworthy because of the success of the schoois in providing "Lau remedies". for bilinguài children, ending sex-role stereotyping in materials and textbooks; increasing the attention given to career and vocational education, dealing with the environmental education movement, and teaching the skille of active citizenship.

Not only $\bar{a} \bar{r} \bar{e}$ the $\bar{s} c h o o l \bar{s}$ providing education to more and more of the population; but they are providing à quality of edcaition that has remained remarkably constant across the past 10 years, despitc the infusion of new populations and distractions. With the exception of the scholasitic Aptitude Test (SAT), measurable qualities of students on other examinations havè shown remarkabie consistency or sifght gains: Hodgkinson points to the fact that there have been no significant decines in the American Coilege Testing Program, the Prelíminary Śchoiastíc Aptitude Test, or the Graduate Record Examination resuits during that period of time. Indeed, since 1980, reading scores have increased significantiy in several major metropoiftan areas; and the president of the College Board recently announced that "the iong-term dēcline in SAT scorē̄ hās been hātūd by 1982 seniors". (Howard, 1983, $\bar{p} .19$).

The mýth of failing schools just does not hold up undèr the scrutiny of examination: The great chalienge of conveỹing new scientific, technological, and humanistic iiteracy during the coming decade can be met by thé schools. And if we enact appropriate school policies; the schools will again succeed.

Myth: There tre Already Too Many Teachers

Reality: Throughout the 1970 's, there was a substantial oversupply of new tēachers̄. Howèver, college sudentē hāve responded to the teacher surplus by enrolling in other fieldes of stưdy.

The annual supply of newly qualified teacher graduates decreased from 314,000 in 197: to 159,000 in 1980, creating a situation of shortages in certain geographtc regions and curricular areas (Frankei; 1982; pp. 71-92): The most drametic undersupply has been of mathematics and science teachers: Recently, significant attention hảs been given to reductions in the number of potential science and mathematics teachers being prepared and theír attrition from cārēés in education to busiñess and industry. Between 1970 and 1980; thère was à 77 percent decline nationwide in the number of secondary
 secondary science teachers being trained (Hurd, Noté 2). In my own State of Georgia, for example; only 70 prospective mathematics teachers were graduated from colleges and universities during the 1981-82 school year: of these; only 42 took classroom positions; with a dropout rate for the first year of 34 percent, or 14 new teachers: We anticipate that this number will continue to decline at a rate of 10 percent per annum.

A recent study of experienced mathematics and science teachers indicated that nearly 30 percent were leaving the classroom for other employment or intended to do so in the near future (Renirie; Note 3). What is most disturbing, however, is the National Science Teacher Association's finding that younger teachers are leaving the schools at à greater rate than older teachers (Waiton, 1982).

Additionaily, coilective bargaining agreements are taking their toil in that they often resuit in the dismissal of newly hired mathematics and science teachers under "last-hired, first-fired" provisions. With the average age of science teachers being 41 (Klein, Note 4)-some 8 years older than the mean of $\bar{a} l l$ employed téachers-and young teachers leaving the profēēion at an
unicecedented rāte; we are faced with an older faculty and iñufficient new personnel entering for replacement: We are ruñing out of time to prepare replacements as these older teachers move closer to retirement:
 and science teachers and devastating losses of young teachers to business and industry $\bar{a} \bar{r}$ enly one dimension of the problem that we face. Shortages and potential shortages of tēachers in other diōciplines are even wore critical because State and Federal policymakers; in their"rusti to remedy perceived scientific and technological inadequacies; are ignoring them:

A study by the Absociation of School; College and University Stafifing reveaied that significant teacher shortages exist not ouly in mathematics; chemistry, physics; earth science; and datáprocesesing; but also in industrial
 education (emotionally digturbed); speech pathology/audiology; añ special education for the multiply-handicapped ("Teacher Supply/Demand;" 1982). Obviously; these current shortages must be faced; but recognition must also be given to other approaching teacher shortages. In Fiorida; for erample; foreign languages; language artsj elementary education; and special children is education are the next areas in which personnel vacancies are anticipated in a deepening shortage of qualified teachers for all areas (Teachers for rlorida Schoole; 1982).
 severe. As noted earlier, enrollmentern college and univeríty educatioñ
 50 percent (Graybeal; 1981) - Over one-half of all States reported unfilled teaching positions between 1980 and 1982 (McGuire; Note 5).
 Education Association reports that fewer of those prepared to teach will actually choose to do so. (Now, gome 75 percent of the education graduates actually entér teaching.) In addition; mañ of those presently teaching wil find employment outside of the field; particulariy when the generai oversuppiy of college graduates begins to drop in the late 1980° s and we experfence a iabor shortagefjob surpius condition ("Teacher Demand Has Declined;" 1982). The Nationai Centē for Education Statistics supporis this contention with one set of projections that suggests that; by 1985, the dupply of new teachers will fail short of the demand by almost 15 percent; a figure that may likely continue to rise into the $1990^{\prime \prime}$ (Franke1; 1982;: pp. 71-92).

A number of factors have contributed to the decline in enrollments in education: One is the teacher surplus of the early $1970^{\circ} 8$ and continuing pubifc perceptions of an oversupply; coupled with the widespread belief that teacher education graduates are employed only in schools. These perceptions contribute to negative attitudes of high school students in considering teaching as a career. In 1981, oniy 3.5 percent of entering coilege students expected to become elementary teachers; and oniy 2 percent expected to teach on the secondary level (Guthrie and Zusmañ, 1982).

Another factor contributing to decinaing enrollments in teacher education programs is demographics. On the basis of the current high school population, colleges and universities must prepare for a decline in the number of postsecondary students; a situation that is expected to continue until the late 1990 's when enroilments wil once again surge (Brenemañ, 1982). Ā a result, schools; colleges, and departments of education must compete with other university programs for \bar{a} ilmited number of students. Were the present decline in teacher education enroilments paraileied by a decilne in the birthrate, thèe might be fewer concerns fō the future: The reaility; however, is thāt the birthrate began to rise in 1978 due to childbearing among post-World War II "baby boom" children. The consequence is an upturn in elementary enrollmentē bēgining this year and, therefore; increases in secondary school enrollimentē begiñing in 1989 (Guthriè and Zusman; 1982).

Recent decinnes in the number of students electing careers ā mathematics or science teachers; and in some cases in other disciplines; have forced unfversities to close smaller teacher preparation programs: Oniy 600 of our 1,350 teacher preparation institutions currently graduate mathematics teachers (Mathematics Teacher Shortage; 1982; Note 6). Even when a university recognizes the need for a teacher education program; it cannot implement the program without an initially sufficient number of students and a commitment of external funds. Consequently, limited numbers of students who choose a college or university without consideration of its teacher education offerings will find that there is no program for them.

One segment of the teaching force that is increasingly disturbed by these enroilment trends is Biack educators. According to Equal education Opportunity commasion data reporited by Witty (1982), from 1975 to 1978 the percentage of Blacks in school positions (teaching and nonteaching) feil from 12.9 to 12.3 percent. In addition to overall enrollent reductions; Witty identifies a series of contributing factors: job losses resulting from desegregation efforts, expanded minority employment opportunities, decline in the quality of elementary and secondary school education for Blacks, and testing and screening practices for entry into education programs and for initial certification.

Concerns about the quality of teaching as a profession, institutional retrenchment, and expanding professional opportunities for women and minorities have resulted in a significant reduction in the pool of potentiai teàcher candidates. Rigorous recruitment strategies must be implementē tō bring thēse persons back into the profession.

Myth: Certification waivers will Bring Good Teachers Into The Clāsoroom
Reality: The placement of unprepared individuals in classrooms through emergency certification is ail too commoniace: In Pennsyivania last year; some 1,300 waivers were awarded, while in ohio the number was at least four times greater.

Awarding emergency certificates is bad education policy and an inappropriate response to the shortage problem. State certification requir
deténining minimum standards of preparation for elementary and secondary school teachers. The requirements are designed to protect children frow unprepared and unqualified teachers. While granting that there are tēachers In the classioom who have met the minimum requirements for certification and Who are not performing satisfactorily, the danger of increasing these numbers by waiving minimum standards is frightening . Can we afford to take that chance? Indeed, can we have both a comintment to educational excellence and encourage the piacement of untrained teachers in our schools?

According to a survéy conducted lāt year by the National Science Teachers Association, 50 percent of newly employed secondary mathematica and acience teachers were considered unqualified by their principals (Waltoñ, 1982): Sūch a statistic is unacceptable. Aithough bright; caring arts and science graduates are available; we are compelied to abk if they are qualified to teach. Our first question must be; have they chosen to teach because they did not meet the requirements for employment in their own fields of preparation? Then we must further inquire: Do they know about sequencing of content or currlculum development? Do they know about tēst construction or the Interpretation of standardized tests? Do they know about learning theory or understand how to manage a class of 30 unique individuals who come from diverse backgrounds or who do not want to learn? Do they know about diagnosing various handicapping conditions or developing appropriate educational programs? Do they have a repertoire of teaching methods, ingtructional strategies, and resources to use in various situations and with different children?

If certification standards need wodification because they are inappropriate or unworkable, it is the responsibility of state government, the profession, and teacher preparation institutions to review these standardes and
 minimum standards in order to accomodate a quick solution not only does not solve the problem, but aiso weakens the entire educational system:

Myth: If We Pay Enough, We Will Get The Teachers

Reallty: Compeñation for teaching is much lower than it should be; but simply raising salaries is no guarantee that schools can attract an adequate number of qualified candidates. Although teacher candidates continue to be attracted to teaching for a variety of intrinsic reasons; the significant decrease in the buying power of teachers' salaries during the 1970's made it imperative to addrēse the "conditions of practice." The problem is that simplè adjūtment in beginning tēachers' salaries, particularly for teachers of science and mathematics; will not make those salaries competitive with other sectors.

According to the National Education Associationg the 1980-81 average starting salary for public secondary school teachers was \$11,758. In comparison, a graduate of a 4-year college degree program in engineering can earn $\$ 22,368$; in accounting, $\$ 16,980$; in chemistry, $\$ 19,536$; and in computer science, $\$ 20,364$ (Guthrie and Zusman, 1982): Although one can easily make a. case for teachers drawing similar salaries; school diatricts simpiy cannot outbid business and industry for personnè. Matching the minimum salary

9

offered by industry would necessitate doubling most school districts' personnel budgets. With the current administration proposing à 30 percent reduction in Federal support for education and many states reporting additional cuta in State ád adjustments can be implemented, particulariy in economicaliy distressed states and regions.

Since achool districts cannot outbid business and industry for teachers on the basis of salariēs, it is proposed that they join forces. Given the fact that the attintion of practicing teachers ī a reality and fewer and fewer teachers are making teaching à long-tēill cārēer, we are suggesting a series of strategles to effect needed reforms.

Neariy 60 percent of those initialiy employed as teachers eventualiy take employment in other occupations: Many view this fact as a problem. With some Imagination this situation could be turned into a genuine resource for both school and prospective employers. American business and industry, and education policymake s in particular, must be made aware of the importance of well-qualified teachers and of the consequences to our communtíes, states, and Nation of unqualified teachers.

Partnerships of school̄ and busineasē need to be formed. Business and industry could continue their practice of hiring recent graduates of mathematics and science teacher education programs; but they could then place them in public schools during the first 3 to 5 years of their employment with their company or on a part-time basis during a similar pertod. During summers the companies could provide employment andor support for further education. Various tax incentive packages can be considered to put this option, developed by my colleague John Sandberg of Western Michigan Uñiversity, iño place,
 compete with those offéred by industry, \bar{a} variation of the firsit option is to explore ways to provide teacherā with meaningful suminer employment opportunities. Legislation introduced last year in the House of Representatives and the Senate suggested a tax credit for those businesses providing mathematics and science teachers with summer jobs. This concept could be broadened to encompass teachers in all discipines; and rather than placement in just business or industry settings; colleges and universities might be encouraged to hire teachers for summer assignments. Museums, thinktanks, libraries, and Stātè and local governments could, with modest incentives, provide teachers with meaningful summer jobs. These collaborative efforts between business and education would not only offer teachers work during summer vacations, they would also expand industry's personnel pool and increase teachers contact with the practical appilcation of skilis and knowledge.

Furthér, we must address the professional growth of ciassroom teachers through appropriate inservice activities that will contribute to both thér subject matter knowledge and professional growth. We must deyelop and deliver inservice programes thāt addrēs̄ both academic and profēs̄ional needs. Incentives for States to conduct programs with school districtes and institutions of highér educātion are appropriate. The National Sciencee

Foundation's model of summer institutes for elementary and secondary school teachers is a viabie option. These institutes could also provide retrafining for those former teacher graduates who are currently not employed as teachers by enabling them with additional preparation to move into high achooi positions in mathematics and science.

I urge that we consider ways of developing a support system for new teachers as they move from the college or university into a classroom setting. Cooperative programs between institutions of higher education and school districts should be indiated to provide entry-year mentoring and gupport programs for first-year teachers. Teachers in all subject areas should be given reduced teaching loads to permit their effective development as beginning teachers.

The environment for instruction should be made conducive to learning and teaching. We should provide our teachers and schools with adequate laboratory facilities and teaching materials. Although 95 percent of academic time tas spent with instructional materiā̄s, lēse than one cent per doliar ise spent for
 7). Additionally; teachers need tö be given some reprieve from the myriad of nouinstructional duties that deplete their energy and reduce their actual teaching time: Clertcal and laboratory assistance should be made availabie to take over such duties and free teachers to do the job for which they were employed.

Many classisoom conditions contribute to teacher dissatisfaction and "burnout;" according to Dean D. Corrigan, past president of the American Assoctation of Colleges for Teacher Education (AACTE) and Dean of the College of Education at Teras AdM University:
We can mandate competency tēsts, ēvaluate and screen
candidates and prepare our teachers with the latest
knowledge and skill; but if we then place them in work
situations where they cannot use this knowledge and akili
we will merely produce more candidates for the teacher
drop-out list.... The critical point is that conditions for
professional practice do not exist widely, either
finaretally or paychologically for the teacher today. Our
efforts as professional "teachers of teachers" will fail
uniess we can create more favorable conditions in which our
graduates can practice thér newly acquired knowledge and
skill (Corifgan, Note 8).
 retain sufficient numbers of qualified teachers. We have high expectations of our teachers: superb academic preparation from the schools of arts and scłences; strong professionai preparation and sufficient supervised expertences in the classroom; and expertise in the iatest in science and technology. Yet; we aupply out=of -datè equipment and matérials ani pay
 preparation. Why $\bar{a} \overline{\text { a }}$ we surprised when these people choose not to remain in thè classioom?

Myth: Teaching Is Just a Matter of Common Sense

Reality: Teaching is a highly complex process requiring persons of exceptional knowledge and skili. The myth seems based on the conventional idea that teaching is a simple didactic process of conveying knowledge to learners and that any reasonabiy inteiligent person with proficiency or skilil in à selected discipline or subject can be effective in accomplighing this objective. Unfortunately, the belief was given added crēence by gelected researchers in the early $1970^{\prime} \bar{s}$. Their resuris were interpreted as indicating that teachers made little if any difference in student learning. Today that attitude results in various study groups and comoissions proposing that graduates with baccalaureate degrees iñ arts and sciencēs be sent into classrooms to learn "on the job" without any professional preparation.

The research of the past decade on teaching performance related to student learning has shown that different teachers can generate significant differences in young children's learning of the basic skilis-particuiariy in reading and mathematics. Teacher educators have been examining these basic differences in the research of Berifner, MacDonaid; Stailings; Gage; Brophy; Good, Biddle, and others and attempting to fashion appropriate professional preparation programs. Smith and his colleagues in florida are iooking at the roles and functions of teacher as teacher; teacher as person; and teacher as professional. Each of these roles is then divided inco other content areas. For example, the role of teacher as teacher is divided into the following categories: (1) diagnosis; (2) instructional planning; (3) instructional management; (4) observation; and (5) interpersonal relations. The Florida model assumes that candidates for teaching need to know the undergirding research base and be abie to practice effectively the identified knowledge and behaviors (Handbook of the Fiorida Performance Measurement System; 1982):

Teaching is a complex process, and beginning teachers must have far more than just common sense when they begin to practice the art and science of teaching . While teachers need to be well educated in liberal and general studfes, AACTE's forthcoming Profile of Excellence for a Beginning Teacher aiso argues that ail beginning teachers must demonstrate specific forms of knowledge: (i) knowiedge of iearners--their individual differences and special learning needs and styles of iearning; (2) knowledge of teaching methods, including differentiated instruction and ciassroom management; (3) knowledge of resources approprlate for specific learning levés and the use of à "ide variety of teaching tools, inciuding computer-aided instruction; (4) knowledge of evaluation, including the validation and interpretation of tests; (5) kñowledge of education setting, the nature of the school as an institution, and the ability to work with parents; and (6) knowledge of the profession of teaching and the ethics that guide it.

Professionaily prepared persons should be able to sequence content and develop appropriate curricuiums, construct tests and interpret standardized scores; effectively manage a ciass of 30 unique individuais; diagnose various handicapping conditions and develop appropriate individuaízed programs; understand the laws thà shape the rights of both learner and teacher, and possess à repertoire of instructional strategies to use in various situations and with different childrēn. Thēse tāsks are only some of those required in the most complē of humañ occupations-thāt of teaching.

Mȳth: Teachèr Educātion Studentē Are Not Very Smart

Reality: Substantial publicity has been given to studies of high school students indicating that those who are considering teaching careers have lower test scores and grade point averages than collese bound gtudents as a group. From this publicity it has been generalized that ail studente enroiled in college or university teacher education programs, ōr; furthermore, $\overline{\text { tho }}$ 位e who complete the programs, āre substantially lēse academically able than studentes in other disciplines.

In 1982 atudents admitted into teacher education programs as college Junlors scored an average of 866 on SAl's taken 2 years previousiy as high school seniors (Accreditation Data Bank; Note 9). Although lower than the mean SAT scores for all students; this score is higher than SAT's reported in 1979 for education-bound students. On the ACT, also administered to high school seniors and used for college admission, 1982 college juniors entering teacher education programs scored about the mean high school score. Taken together, these data suggest that students planning careers in education are neither academically superior nor inferior to other students.

Admission to teacher education programs is not made casualiy. Students must meet university requirements and complete a program of general studies with an acceptable grade-point average prior to beginning their professional preparation. Many universities require that potential teacher education students, in addition to having the academic credentials, pass entry or preprofessional testes prior to admission to the program (Sandefur, Note 10). A recent study, conducted by AACTE (Noté 9) revēaled that junior studentē admitted for the 1981-82 school year into a teacher education program in a sample of 200 institutions; carried a 2.8 grade point average in general education courses: This survey aiso indicated that the average GPA of June 1982 éducation graduates was 3.0 , higher than minimum institutionai requirements but consistent with GEA's of studente entering the program. Together, grade point averagē and ACT scorēs suggest thàt thè abilitiē of educâtion studentē entering and completing a teacher preparation program are equal to those of students in many other fields of study.

This information does not ignore the fact that the pool of talented students who express interest in teaching as a carear has diminished. - Schlechty and vance (Note 11) have reported that the current teaching pool is not only smaller, but is also charecterized by an absence of the large number of very academically able; particularly, women and Blacks. The idsue is not; as Schlechty and Vance correctly point out; lower standaras for entry into teacher education programs; rather; it is a recruitment and retention problem. Average students are electing teaching as a career because we grant the profession barely average status and below-average salaries. It is essential that we begin to search out gocd people and provide incentives for them to enter and remain in the profession.

Myth: Teacher Edication Stivdento Spend All Their Time in Professional Education Courses

Reality: Candई́dates fōr secondary school positions in mathematics and science take a highiy rigorous college program-much of it in science or mathematics. Typicaliy; a teacher preparation program is made up of four components: a solid foundation in general education in arts and sciences Including bāsic skillss; advanced or specialized study in ōne or more academic subjects; professional education courses. in methods; theories of learning; and foundational studies; and a student tēaching experience.

Preifininary data from an AACTE survey of some 100 schools of education reveal a wide range of semester hour requirements for secondary teacher education programs in mathematics and science (Study of Science and Mathematics Education Programs; Note 12): For teacher candidates; general education requirements range from 37 to 61 semester hours of a typical 120-130 semester hour program. Students specializing iñ mathematićs educat́on are required to tāke an average of 33 additional semester hours óf spećáaízéd māthematics courses. Those in science education must take an average ō $4 \bar{i}$ additional hours in speciālized science courses.

In this same sample; professional education courses averaged only 25 semester hours of the total mathematics or science education candidate's coursework; with student teaching consuming almost one half of these hours. The range of professional coursework is consistently smalfer than for general education and academic speciaifzation categories (Note 12). This survey reported that; while ali candidates are enrolied in a teaching experience; schools of education are requiring significant semester hours of additional school-based experiences. The reality is that pedagogical studies consume only a minor portion of the secondary mathematics and science education candidate's undergraduate preparation.

To illustrate this further, the teacher education programs of three different institutions are depicted in Exhibits $1 ; 2$ and 3. The institutions involved are typicai of those preparing teachers: one is a large land grant institution; anothér a major producer of teachers and former normai school; and the third is a small liberal arts college with a quait ty teacher éducation progrā.

While one purpose in depicting programs of study for mathematics and science education candidates is to refute the image of students spending inordinate periods of time in professional programs, another purpose is to point up a problem in the preparation received; namely, in a major in mathematics or science; there is ifttie in the college curriculum that can be directiy applied to the teaching of high school algebra or biology: Indeed, $\bar{i} \bar{t}$ should be recognizē that the very advancéd subject matter training given. these students may inadvertently serve as a disincentive for them to enter secondary classrooms.

Ma thematics Education Major's Requirements
 (Large Land Grant Institution)

General Stules

Ādvancē or Specializē Study in Mathematics
Śtudents majoríng in secondary mathematics will select one of the follcwing three programs:

Plan One: Mathematics major of 30 hours and any mor ifsted.

Exhibit 1 (continued)

Plan Two: Mathematics major of 30 hours and two fieldes of 12 hours each chosen from the following Support Areas:

Astronomy	Economics
*Biological Science	Engineering Drawing
Chemistry	Physics
Computer Science	Statistics
Earth Science	

Plan Three: Mathematics major of 30 hours and any combination of 24 hours from areas reiated to mathematics such as (courses in other areas may be selected with advisor's approval):-

Astronomy _ Economics
*Biological Science Engineering Drawing Chemistry

Physics
Computer Science Statistics Earth Science

Ma jor in Mathematics (30 hours) (MA 122 may not ie part of 30 -hours major)
Required:

MA 113
or
MA 115
or
$M_{M A} \quad 117$

Calculus I

Elementāry Analysis̄ I (Honors Math) $\quad 4$ hrs.
Differential Calcuilus

$M A \quad 114$
Or
$M A \quad 116$
Or
MA 118

Caículus

Intēgrā Cālculus

MA 213	
MA	215
$0{ }^{1}$	
MA	217

Caiculus III

Calculus of Several Variāiles
MA 341
Topics in Geometry
3 hrs
*Biology 110 māy not be used ās one of the coursē in the Support Area.

Exhibit 1 (continued)

Exhibit 2
Science Education Major's Requicements
(Large State College)
 Programi, sciẹnce teacher candidates must complete the foilowing program:

Sctence Teaching Major (minimum of 51 semester hours)
This major may be added to the Secondary Instructional Elcense; its coverage is grades 9-12. Students who elect to complete a Secondary Science License are required to take three components as part of the Science Major: These components are genéfal requirements; one primary area, and one supporting area. The primary and supporting areas include the following: biology; chemistry, earth space science; general science;:mathematics; physical science, and physics.

Prerequisite courses for the Science Major may be taken as part of this General Education category of electives. In addition to these requirements; students must complete a two-hour methods course in the primary area and a twohour methods course in the supporting area.

General Requirements (12 semester hours)
Any combination of the courses listed below will fuifili this requirement with the stipulation that each course is selected from a different discipline. (Courses used to satisfy this requirement may not aiso be used to satisfy requirements in the primary or supporting araas.) Chemistry 105-3
 hr . recommended) or $113-3 \mathrm{hrs}$. ($113 \mathrm{~L}-1 \mathrm{hr}$. recommended); Life Sciences $101=-3$ hrs.; 101L--1 hr.; Physices 105-4 hrs. or 205-5 hrs.

Students must complēte two séif-pacē instructionai modules concerned with drugs and nutrition or an approved substitute.

Primary and Supporting Arēā̀

Students who elect a Science Major with primary or supporting areas in biology (ilfe sciences), chemistry, earth space science (geography and geology), mathematics (oniy when physics or chemistry is à primary or supporting area), and physics will find these areas described under their respective departments. Géneral science and Physical Science curricuiumè are below:

General Science Primary Area (24 semester hours)

Required courses:

Chemistry 106-3 hrs-g 106L-1 hro ; Life Sciences 102--3 hrs., 102L=1 hr.; Physics 106-4 hrs.; Geography and Geology 152-3 hrso; 153-3 hrs. or 354-3 hrs.; 314- -3 hrs. or 468--3 hrs. or $470-\mathbf{- 3}$ hrs. Approved elective- 3 hrs.

General Science Supporting Area (18 semestē hours)
Requiried couireses:
 102-3 hrs.; 102 -1 hr:; Geography and Geology 314-3 hrs. or 315-3 hris. or 468-0 hrs. or 470--3 hrs: Approved elective-3 hrs:

Students completing this primary or supporting area should elect Chemistry 105 and Physices 105 from the general requirementa.

Physical Science Primary Area (24-28 semester hours)

Required courses:
Chemistry 106- $\mathbf{3}$ hrs.; 106L-1_hr. or 108-4 hrs.; 321-4 hrs. or $351-3 \mathrm{hrs} ., 351 \mathrm{~L}-1 \mathrm{hr}$. and 352-3 hris.; 352L-1 hr.; Geography and Geology 314--3 hrs. or 315--3 hrs.; 468--3 hrs. or 470-3 hrs.; Physics 206-5 hrs.; 340-5 hrs.

Physical Science Supporting Area (15 semegter hours)
Required courses:

 Or 470- $\mathbf{~ - ~} \mathbf{h r s}$.

Students compléting this primary or supporting arē should elect Chemistry 105 and Phȳsics 105 from the general requirements.

Exhibit 3

Mathematics Education Major's Requirement̄
(Small Liberal Arts College)

In addition to general studies; a teacher education major is required to take the following program:

Should we not examine the curriculum in light of building depth for the subjects to be taught? it seems important that the academic requirements for secondary teachers be reviewed toward recommending more emphasis on general science or, mathematics courses and additional supervised ciassroom experience. We do not need to prepare all of our graduates to teach in a talented and gifted school or to teach calculus or advanced genetics; what we need are teachers who can introduce mathematical and scientific concepts to secondary schooi students and prepare them for more advanced collegiate work or to compete successfully for more technologically demanding jobs.

Schools of education àre prepared to cooperate with others within the higher education comunity, to consider the appropriate preparation of teachers: We would encourage the participante iñ thise conference to recommend

One option is to provide à aeries óf modest discretionary grants to schools of education to sitimulate faculty within education and departmente of wathematices and science to develop the following materiais: (1) viable recruitrent strategies: (2) new cuirricul.um for the preparation of inddle school. jualor itgh, and sentor high achool sciencè and mathematices teachers; (3) accompany ing instructional and or software programs and materiā̄̄; (4) inservice or staff development programs for practitioners in both subject matter and teacher education; and (5) faculty development programs to sensitize college personnel to these problems and needs. This type of grant program-with monies targeted to deans of education and deans of arts and sclence to be used for cooperative programs-could achieve major reform at medest costs.

Many schools of education have been forced to reduce faculty innes in science and mathematics education because of low program enrollments. Failure to generate sufficient credit hours warrants the elimination of courses and entire departments. Resources are needed to preserve faculty and programs in areas of low enrollment and bigh need and to gupport new or innovative programs that may initialiy attract smail to modest numbers of students. In some instances, schoois of education are also confronted with she problem of retalning high quality mathematics and science faculty who are now very
 montes to add to their salaries (for full-yeàr employment) or to provide addftionai benefits is very difficult and may result in the continuing attrition of facuity in these areas of high need-a problem not given sufficient attention by those concerned with this issue.

Myth: A Single Solution Io The Anower

Reality: Different solutions are needed for different problems. For instance; the solutions that address the shortages of mathematics teachers, at the high school level (i.e.; finding technically and pedagogicaily competent teachers to teach high school calculus) are not the same ati: thote that will alleviate the problem of inadequate mathematice education it the elementary level. Most of the solutions that have been posed in this and previous conferences have focused on the former problem (aniarged to include the problem of at cracting phyaics and chemistry teachers) and have neglected the problem of dealing with the ghortage of qualifted wathematica and science teachers for the elementary grades.

Shamos (1982) reports that there are severai studies that both document and address, the problem of unqualified or underqualified eiementary school teachers. He indicatē that thī is \bar{s} a particular problem because it is in ine elementary grades that much can be accomplished. As Shamos notes; in the "formative elementary school years, when minds are so receptive to new ideas; and before their patterns of thinking have become fixed; it should be possible to deveiop a foundation in science that will remain a permanent part of the individuai's inteilectual ilfe" (Shamos; 1982, p. 7).

Science education prior to the secondary school experience is critical because it provides the foundation for subsequent scientific understanding. Attention must be given to our élementary schools where boys and girls develop attitudes toward science, mathematice, and technoiogy: A school's earhesis on mathematics and science is in̄fluenced by student and parental atititudas; as
 reinforce positive attitudes. Mathematics is "most popular" amore $4 \overline{8}$ percent of third graders but declines to 18 percent in the 12 th grade. rivs. 3 gudente indicate that they do not see any real use for mathematics in their ifves. Scfence courses are even more widely disilked, and the negative attitude is acquired early; by the end of the third grade, $\bar{a} 1 \mathrm{lmost}$ half of the $\bar{s} t u d e n t s$ have no destre for more science; and that percentage is constant through the 12 th grade (Forbes; Note 13).

Generally, lack of interest in mathematice and science is refiected by the quantity of school subject offerings. In the elementary grades; which have 25 hours of instruction weekly, lesses than 4 hours is devoted to mathematices and less than 1 houir to sciencé (Forbeses, Ngtē 13). Consequently, the attitudes of today's high school students were forged over à decade ago.

The absençe of quaiffied teachers at the elementary leve. presexts a reā dilema to thos who prepare teachers: to continue to prepare elementary teachers to be responsibie for the total educational experiences or to prepare subject matter specialists fōr the elementary grades. Simple solutions will not resolve this dilemma. More creative ways are needed to help elementary school tēachers $\bar{g} \bar{a} \bar{n} \bar{n}$ competence and confidence for teaching science and mathematics and to support them, through appropriate means; throughout thér careers:

School-based science specialists; system-wide curriculum supervisors, inservice workshops; equipment purchases, avi curriculum dēvelopment éfforts are found in many school systems; but they are usually directed toward improving secondary school instruction. The success of such approaches has been varied, but little attention has been given to improvine science ingtruction at presecondary levels. While it is hoped that some of the extended programs of professional preparation for elementary schooi teachers will address this problem at the preservice stage; better means of supporting the practicing teacher must also be found.

One ídea that holds promise cails for the development of an interactive video capability and the parailei development of instructional units in science to "transport" resources into kindergarten through sixth grade classrooms via the new technologies. Teams of subject matter scholars;
practitionérs, educational dēvelopment specialistss; and production personnel could develop units in science: Through their efforts and available technology, teachers could draw on this data base to enrich programs and/or to provide direct instruction in concepts of science (Sandberg and Bosco; 1983). Such a practice could improve the ability of teachers to heip eiementary school children gain greater technological and science awareness during the formative years.
 Within the larger contert of ensuring competence and ercellence of teachers. I believe that the concerns that we have argue for the need for a comprehensive personaei development poilcy that wouid ensure that preparation of sufficient numbers of qualifié teachers to meet current and future demand-a comprehensive policy that would address recruitment into the profession, the quality of preparation, the nature of the classioom setting in which we place these teachers; the necessary support services for them; and retention in the profession. We need a national policy to be a model for addressing future personnei shortages in a rational manner. Collaborative Federai and State partnerships must be forged that will make the best use of combined resources in developing and implementing innovative responses to changing conditions in the profession.

CONCLUSION

The shortage of qualified mathematics and science teachers is criticā. Making do adith an "almost qualified" mathematics or science teacher, reducing graduation requirements because student achievement has falleng or introducing scores of remedial courses for college freshmen only compounds the problemShifting responsibility from elementary to secondary schools; from secondary schools to the colleges, from the colleges to the teachers; from the teachers to the nature of their working environment $\overline{1} \bar{s}$ no solution. We all share the responsibility; now it is time to identify integrated stratēiē and develop coordinated efforts.

SUMMARY OF PROPOSAIS

I propose that if we are to effect iasting inprovements in education; we must engage in diaiogue and research directed at phin following soals.

Develop programs and techniqued for the early identification of ghle students to attract them inte teaching Special attention can be given to attracting prospective teacheris to areas of shortage and projected shortages. To accomplish this goal; it is necessazy to enifst the support and efforts of practitioners; community and business leaders; and our colleagues in the arts, sciences; technology; and business on our own campuses.

Reexamine college entrance requirements and the general education components in lisht of ilteracy needs in other than the traditional ways. Some attention must be given to the literacy of the general public, rather than merely emphasizing courses and knowledge required for or leading to a $\bar{m} \overline{j o r}$ in the subject being studied. The expectation of the colleges for entering proficiency must be related to the necessary foundation for college study. General education, then, must be considered in ilght of the general knowledge that an educated citizen should possessi

S̄treng then the supporit areas for science and mathematics. science añ mathematics cannot be studied in isolation. Knowledge of the humanities and social sciences becomes a tool for reasoning, communicating, and making ethical decisions. To ignore the reiationships between mathematics and science and other disciplines deprives the engineer, the mathematician; and the scientist the breadth of knowledge necessary to become a fully productive and contributing citizen.

Change attitudes toward the study of science and mathematics. To emphasize the study of mathematics and science at the secondary school levelं to the neglēc ō the ēariłē grades may contribute to the negative atítudes and the element of fear of many young people toward these subjects. That fear and those attitudes provide a type of immuization for interest in the subjects. The auxiety, fear, and attitudes can be changed if concértéd efforts āre made to develop understanding and a conceptual framework on which to base the $\bar{s} t u d y$ of science and mathematics and to build confidence in the ability to learin, to deal with, and to work in thēse areās.

Encourage teacher educators to explore dēviations from current patterns of teacher education to accomodate new needs and challengēs. Some of the restraints to change in teacher education are imposed by tradition; accreditation, and certification Authorsesticng recognition; and encouragement for reconceptualizing traditional practices used in the preparation of teachers can release the knowiedge, the experience; the imagination; and the energy necessary to initiate new; exciting; and éffective modeis. Consíderation should be given to estabilshing a national academy or institute for the study of teacher education to reflect the strength of knowledge available concerning teacher education, té encourage resēarch in the areās of teacher education, and to provide tràning opportunitiēs for tēacher educāorss.

1. Cremin, L. American education in the 1980s: An argument fō à comprehensive approach. Address to the New York Academy of Public Education; May 1982.
2. Hurd p. P. State of precoliege education in mathematics and science: Opening remarks at the National Academies of Sctences and Engineering Nātional Convocation on Precollege Educat́on in Máthematices and Sćience;; Washington; D.C.; May 1982.
3. Renirie; J- Education commission to explore inprovement in science \bar{y}_{i} mathemarics achievement (press release): National Scieñee Foundation, Washington; D.C.; ApriI 1982.
4. Klein, S. Testimony before the Committee on labor and Human Resources; U.S. Senate; Kashington; D.C.; 1982; p.6.
5. McGuire, W.H. Sratement of the Narional Edication deacoiation on House Resolution 6674 to the House Educstion and Labor Commitee; Washington, D.C.; September 18; 1982.
6. Mathematics teacher shortage: An NCTM fact sheet. National Council of

7. Science and mathematics in the schools: Repoit of a convocation. Proceedings of the National Academies 6 S Siences and Engineering Convocation, Washington, D.C.; May 1982. (National Academy Press; Room J \bar{H} 700, 2101 Constitution Avenue; N.W.; Washington, D.C. 20418.)
8. Corrigañ; $\overline{\mathrm{D}}$. Statement before the annuaj meeting of the American Association of Colleges for Teacher Education; Houston; Texas; February 1980.
9. Accreditation Data Bank Questionalie. Statistical analysis by the American Aseociation of Collegés for Teacher Education; Washington; D.C. Septēber 1982.
10. Sandefur; J.T. Teacher competency assessment: A national perspective: Paper prepared at Western Rentucky University; Bowing Green; October 1982.
11. Schlechty; P.C.; \& Vance; V.S. Recruitment, selection and retention: The shape of the teaching force. A paper presented at a National Invitational conference on Research and Teaching: Implications for Practice. Airlee House; Warrenton, Virginia; February 25-27, 1982.
12. Study of science and mathematics education programe in selected American
 añāsis by the Americañ Asoociation of Colleges for Teacher Education; Washington, D.C.; Januaxy 1983.
13. Forbes, R.H. Testimony of the Education Comission of the States to the House Sūcomittee on Elementāry. Secondāy and Vocational Education, Washington; D.C., Septembęr 28, 1982, p. 5.

REFERENCES

Brenewan, D.W. The coming enroliment crisis: What every trustee must know. Washington, D.C.: Association of Governing Boards; 1982.

Dearman, N., \& Plisko, $\nabla .(E d \bar{s}$.$) . The condition of education. Washington,$ D.C.: National Center for Education Statistics; 1982.

Fiowers, A. Testimony to Sinheomittee on Elementary, Secondary and Vocational. Education and Subcommittee on Postsecondary. Edication; U.S: Hoūse of Representatives; Washington; D:C-; September 29; 1982.

Frankē; M. Instructional staff. In M. Frankel and $\overline{\mathrm{D}}$. Geraid (Eds.); Projections of education stātistiç to 1990-91 (Vol. I). Wāsington,

Graybeal; w. S: Teachér supply and demand in pubiic schools; 1980-1981. Washingtō̃; D.C.: National Education Association; 1981.

Guthrie, J.W. g Zusman; A. Teacher supply and demand in mathematics and sciencé. Phi Deltā Kāppā; September 1982; 64; 28.

Handbook of the Florida performance measurement system- Tallahassee; Florida: Florida Office of Teacher Education; Certification; and Inservice Staff Deveiopment; 1982:

Hodgkingon, H. What's still right with education. Fhi'Delta Kappan, December 1982, 64; 231-235.

Sandberg, J., \& Bosco; J. A plan to improve science educátion at the elementā̀y and middle school levē, a prospectūs. Kalamazoo, Michigañ

Shamos; M. Sctence for everyone? New York University Education Quarteriy; Sumer 1982; Xín(4); 2-10.
 Febrūày 17, 1982, 14.

Teachers fō piorida schools: Personnel projections. Education Standards Comission; State of Florida Department of Educationg June 1982.

Walton, S. Teacher shortage in mathematics; science is critical; survey finds. Education Week; March 31; 1982; 1 (27).
sit

Witty, E.P. prospects for black teachers: Preparation, certification, employment Washiñton, D.C.: ERIC Clēaringhouse on Teacher Educatiō 1982: (ERIC Document Reproduction Sērvicē No. ED 213 659).

DISCUSSION OF
 TEACHER EDUCATION: CURRENT CONDITIONS

Jamés Réliy; Dean of the Coliege of Education; University of Pittaburgh

I feel obliged at the outset to express an extraordinary compliment to Dr. Anne Flowers for her willingness to address a topic of such enormons concern and consteraation. The task is imense; ambitious; and challenging. It is as if one wer* pursuing the horizon or; to change the figure; trying to gather the ocean in a teacup. Although the effort may be thoroughiy engagingpursuing the horizon or gatheilng the ocean in a teacup-and exhilapating; it is unifkely to have salutary outcomes.

At first reading; the draft I had was about 40 pages iong and in some instances my marginal notes far exceeded the text; which would sugsest it was somewhat provocative. I was inclined to express my thoughts in the language of Plato's "Theaetetus." He said, "I am amazed when I think about such things. By the gods I am. I keep asking what things mean, and sometimes my mind aimost becomes dizzy with the contemplation of them."

There are several difficulties in addressing myths, as Dr. Flowers hā átrempted to do. Firsí, mythe often anisē because of à least partial truths. Some events and experiencē created or conciplbuted to the beliéf iñ them so that it takes careful anklysis of the parts that are true; as well as the parts that are false; to dispel the myth effectively.

Second; à beliéf may assume the label of myth; not only by being falee but by being widely belleved. So as we address myths; we must recognize the necessity of unusually éffective argiments to effect change in a belief system

My concern fs that Dr: Flowers' analyses of the eight beliefs she labels "myths" may not adequately address these two points. She rarely acknowledges the at least partial truth in the myth so the analyses are often incomplete, and the arguments used to dispel the myth often seem arguments designed for an audience that has already rejected the myth.

To put this another way, in giving oniy a one-sentence characterization of each myth; the author falle to explain the content and arguments of the mythe she purports to dispel. This makes it difficult to determine exactly what is being refuted. And the refutations presented as reality are composed of fairly atandard recitals of teacher education institutions' rationales for the most part. They do not adequately address the issues and problems of science and mathematics teacher preparation.

The proposais $\bar{a} \bar{t}$ the end seem to gave no apparent connection with the myths and realities aurveyed in the body of the paper, and several of thesesound good but seem to be rathershy-of-ireaning.

A seconc obcervation: As stated ty cns in or, the probiems confronting teacher education and the preparatior rif teacier are complex and cannot be resolved iñ simple ways. Yet tice autiof goes or. to be prescriptive in areas where flexibility and alternative actions appear, to be feasible.

Although some problems are national; the solutions in most casees must be regional 2 r area-specific For example; ofr area, Pittsburgh in Peñsylvaña-Pittsburgh is iosing population while the Southwest is growing. Some areas have high unemployment; even among the educated; while others have stable and growing empioyment. And some areas or districts have older teachers rapidiy moving toward retirement, while others have very young teachers iooking for other options.

The problem posed is real. The solutions based upon the author's perceptioñ appear ās partīal and limited. Yet the author has set forth a set of ideā̄ which cān be examiñed, revised, expanded, ; ; člarified. These tasks would be helped immeasurably if wore informed $u \bar{y}$ a more courlete grasp of history and the relevant research literature. This̄ is \bar{s} a $\bar{s} t r o n \bar{g}$ biās of mine, the necessity to put things in historical perspective.

Aibin Dunes Winspear, when he was at wisconsin; wrote a book; The Genesis ōf piata's Thought, and he began the book with a statement from an anthropologist; E.B. Tyier: it is an awkward sentence:

To ingenious attempts to explain in the light of reason that which needs the light of history for its full meaning; much of the learned nonsense of the world hās indeed ieēn doomed.

I think the inc:ght of E-B. Tyler's is one that we can honor in wir onm investigation, the necessity of putting things in some historical perspective: The author seems to believe that remedtes tacked on from outside can produce fundamental changes in schools; a notion which is iargeiy unsupported historically and unsupported empirically.

For 2 years, from 1966 to 1968, Dick Lawrence and I ian a think tank; a National Institute for AACTE in the Office of Education. And after 2 years I wrote up some of our findings. One was that national experts and national programs have iittle impact on local programs because the local experts siee to that. The second observation I would share is that we discovered the inexhaustible capacity of an educational bureaucracy to absorb many innovations without changing a thing:

So I do feel compelled to try to put things in historical perspective because I think it does make for some economy in terms of our inquiry and rēearch:

There continue to be discrepancies in access to knowiedge and in the quality of instruction. If you see Opopkovitz on the myth of educational reform; I think there are some very clear reminders of that.

From the mathematics, natural science, and social science curriculum reform efforts of the $1950^{\prime} s$ and $1960^{\prime} \mathrm{s}$, for example, we should have learned of the myth of supposediy teacher-proof curricula, with or without benefit of computers, which unfortunately are ofter used as $\$ 3,000$ worksheets:

Good teaching involves more than knowing your subject matter in terms of credit hours accumulated. Questions that might be well raised and addressed here include knowledge of what subject matter $\boldsymbol{p}_{\text {c }}$ and how the desired mathematics or science could best be taught.

In this regard the paper does not acknowledge relevant research in cogitive information processing, science education; and teacher education, such as that of Smith and Anderson at Michigan State or the work that is going on at Wisconsin. And I certânly feel obliged to mention what is going on at the University of Pittsiburgh, especially in the Learning Reesearch and Development Center by Greerio and othérs, much of which is supported by NiE. -

A third point; the author's tendency to overgenerailze, particulariy to overstate claims; is disturbing; ās is the absence of ciear relationships between the myth problems and the proposed solutions.

Now, to myself I made à gratūitous observation, "Altiough hyperbole is añ. acceptable literary tool and device; it tends to generate problems and ambigutty in professic:al discourse and scientific inquity:"

While the proposal to encourage teacher-educators to explore deviations from current patterns of teacher education and to accommodate new needs and chailenges seems intrisuing, it is the fact that the initiatives iterated are unilkely and suggest little substantive basis that gives me considérable concern. And to ask for money without indicating how it is to be spent and providing evidence that auch use is likely to have the desired effects seems inappropitate and certainly not convincing.

The author implies that while teacher educators are not responsible for the problem, they can, given enough money and freedom, provide solutions: To ne this is undisciplined optimism and I don't find the assertion very compeiling. In fact, i a. uncomfortabiy reminded of Arthur Wise's "Legisiated Learuing" and his notion of hyperrationaízation.

While the papar míght appeal to some teacher educators, it ī̄ not likēy to be received well, I tifink, by researchers, and it would seem to provide a somewhat easy target for teacher education critics. Their number aiready is legion, and I have no desire to increase it.

The thing I do want to conclude with, and Jerome Bruner is the last person for whom I usually reach as à source to quoté, is from hio "Education Revisited," where he comes out as the new Bruner and says:

The reform of the mathematics is not enough. The reform of the schools is not enough. The challenge of man is to produce a civilization that cannot only feed him but keep him caring and believing.

Now, that's the note on which I want to close.

In general, I certainly agree with both Anne and Jim in the sense that myths are in fact unproved collective bellefs, beliefs that are accepted uncriticaily, and thus lack foundation in fact. But at the same time; these same myths do emerge and acquire form and credibility because they have the se dimensions of reality embedded in them. In fact; the myths are rooted in culture and àre complex in nature.

The analysis of mythe, then, it seems to me, for purposes of identifying elements of reālity, or aspects in need of further research, must also be complex and culture-specific. Thüs I share a substantial amount of jim's reaction to Anne's paper in the sense that the myths and the comidnte on them tend to be so broad and sweeping that it makē it somewhat difficuit to tease out the partial aspects of reality or the unexamined questiona that might be associated with them.

But I think we have to acknowledge the difficulty of identifying mytha about teacher preparation. Whether it concerns the teacher shortage in
 difficulty emerges in part from the nea $\overline{\text { to }}$ address nationai concerns that hāve \bar{a} modest consensus; while we real ge simuitaneousiy that most generalizations cān be contradicted wilh specific exceptions at iocal and regional levels.
the task is fraught with the inkerent chālenge, I think, of making gen al statements that are charactertstic of many, though cīeariy pot all, persons or programs or ingtitutions that are concerned with teecher preparation.

I hāve the same kind of concern as Jin did with the paper, in the sense that we take \bar{a} myth and talk $\bar{a} b o u t$ it in terms of all or none fin totai; as opposed to most or some in part. For example, "The schools are fayling" issue. I think this statement is too general and in need of greater specificity.

To say that the bchools are or are not failing in general is not to get us into a "Yes; they are;" "No; they are not" argument; but rather to state that it is the case. In certain areas we have major problems; and the probiems we have are a function of the fallure to achieve some important goals at the level and in certain fields that we would hope to do better with in the future:

This area of science and mathematics is one that I.thigk we need to look at squarely and publicly acknowledge particular failures that we might be having in this or that regard. At the same time, I think we need to acknowiedge the streng this that the schools have had, the successes they have had as well as failures. But ithink we shouldn't do that by turniag our backs on the persistent problems.

My concern with the other wyths are aiso similar. They iack expiacation of the complexities. For example, there are too many teachers already in certalo fields and certain locations; and there are too few in others. This situation is not new. In fact, we have had a shortage of physical science; chewistry, physics; and mathematics teachers since 1939: But the magitude of the problen has changed. We must ask what thas been done or wight be tried by teacher preparation institutions that will heip alleviate this continuing iong-term probiew.

The nyth that teacher education students are not very, gmart has grown in acceptance; as we know; and number of studies have clearly demonstrated that some of then are lacking in important basic skilla, subject matter knowledge; and teaching coapetence. Thus; I think we ought not argue that teacher education students or gradiltes are sufficientiy smart in general terms; for some are and some are not.

In my view; sone of the critical questions here include: How can we come to make important judgents concerning knowiedge and skill sufficiency? What is quality? What constitutes it? On what grounds? And what are sore sound means of making needed discriminations between those who have sufficient preparation and those who do not? And what we should ask is: What has been done? What can be done on the part of those who prepare and hire teachers in this regard?

The myth that teacher education programs are acadenicaliy substandard is not treated well in general texim; either: For some ceacher education prograne likely are substandard while others are not The question is agein one of makig needed discriminations between those teacher education programs that have mine or are making significant advances in preparing qualified teachers and those that are not. Related questions there concern the adequacy of program resources for quality preservice as well as inservice teaching and learalug in actence and meheratics:

The Hyth suggesting the general beliefs that certification waivers and adaftioni balary would assure food teachers 1s somewhat questionable. Why? Because in general it is anaued that these strategies could help alleviate the teacher shortage. But I don't think it is widely accepted that these changes alone would guarantee quality.

One paricular hypothesis dí emerge in Dra Fiowers' discussion that was ciear and provocative; and since i bave major disagreement with it; I thought I would give it fome focused attention for the remainder of ry remarks:

When challenging the myth that teacher education students spend too wuch time in professional ducation courses, Anne questioned the level of the cepth of the sientific and/or methematcal knowledse needed by the secondary teacher. She impiled, in fact; that deep uderatanding of mathemics and science subjects could have unintended deleterious consequences. Her reasoning seens to be this: that the posession of advaced knowledge in chese bubjecte creates kind of enjoyment and need of intaliectupl ctimulation; a form of enjoyment and need thet may be subjon-zpecific and thus frustrating to the mantatics or science teacher when teaching iower
levels of these subjects to high school students. Thus; she recommende a possible reduction in the depth of subject-matter knowledge required of prospective teachers since it may not be directiy applied to tealching high school algebra or biology.

If take strong issue with thls view because my experience and my general bellef is that teaching can be; and often is, an extremely siimulating intellectual activity that is enhanced when a person has a deep and sound grasp of the subject matter, even when teaching the lower level courses. But what is important, I think, is that these differences of opinion cannot really be fruitfully discussed without the further knowledge and insight available through research.

Both philosophical and empirical study is needed if teacher educators, ifke Anne and jfm and me, are to become better informed about what are prōabiy no more than partial truths associated with our respective views.

In fact, when I was first reading this particular issue tn the paper; i was reminded of a meeting I attended at the Teacher Eddeation Counctl at Michigan State. The mathematics department had proposxi as a requirement a fourth course in calculus. We, on the other hand, were saying; "Well, the major evaluation and followup studies of our graduates in mathematics do not indicate they really feel they ncad more mathematics iut that they are having most difficulty teaching their general mathematics students in ninth grade, and they're saytng; 'You didn't prepare me for this.'"

So whe ther there should be more or less is a question of great importance that needs to be studied if we are to get this beyond a "Yes, you do," "No, you don't" kind of argument, which is about where we are now, in my view. I think it is high time that we fincreāe our research activity and decrease our
 quality of teàching and lēérining.

Related to this issue is another myth we have reard talked atout here at the conference, which is that elementary chool teachers do not have sifficient knowledge of sctence and mathematics in their teacher preparation in order to do it welí. Evidence suggests a number of negative attitudes and misconceptions about science ans mathematics are acquired by atudents in the
 hy pothesis-that elementary enhol ieachers who have a stronger and deeper grounding in the concepts of science and matiematics might be more succē̄̄̄ful. I think that should be thoroughly examined ir a number of approaches.

In terms of the secondary Eeachars--I'm calking abort the subject matter for prospective teachers that nead múa reality testing-tie sacondary science anc mathematics teachers जo not appear to acqore suffictent ericuledge aboui pedagogy, iearners; and learning to theit tea er preparatio: to teach it suffactentiy weli.

I think the secondary tachers generaily find studies in theif majar rewarding , rélatively ēā̄y to master. We know hey have particular difficulty, In teaching it to youngeters who do not find the subject quite as readily understandable or as intrinsically rewarding as they do. And so 1 am suggesting that teacher preparation programs at the elementary and secondary levels might be adjusted in these ways; increasing knowledge of the subject for the elementary teacher; and increasing knowledge of pedagogy for the secondary teacher; and then pursuing inquiríes into the subsequent éffects on teaching practice and student learnins.

Another approach that I think deservea serious consideration concerns the rewards of reaching itself- Increased pay for science and mathematics teachers cr tuition waivers for zheir preparation if they teach in elementary and secridary schoois for a number of years is; i think; important in texms of recruitment and retention of talented persons: We should explore and proceed with thite possibilities. But I think in the long run financial rewards may not be sufficient-necessary, perhaps, but not sufficient and one of the most important rewards in teaching will perhaps be overlooked if we do not seek to better understand these rewards in general.
here are indications that some of the most powerfui rewards in teaching are; in fact; associated with learner achievenent; that is; when the learner's achievement is a clear consequence of the teacher's instructional efforts. Could teacher preparation programs help prospective teachers to think about and come to value such rewardsi Do some persons enter the profession because they already value these academic and humantarian outcoucs?

1 think about the achiete who after yeqrs of success and enjoyment playing
 of others are rewarding. Tea her preparation programs help the prospective science and mathematics teacher: mio genuinciy enjoy playing the game, particularly thode at the secondary level; come to find the achievements and the winnings of others as rewarding and as inteliectualiy chailenging as the coach -.

TVen so; it may take new approché to both preáervice and inservica teachér education. If thēē potentialiy importañ rēwarde in tēehing are to be realized; I think we need further reality teating and research on the rewards of teaching itself which could lead to some fruitful means of attracting and keping talented scince and mathematics teachers for whom monetary gain is not necessarily the single or the highest good.

Since it ī not only my ih, however, but safe to assume that teachers cannct to ch what : hey do not know; it is criticai; I think; that we gather more information on the nature and the level of ricienca and mathimaticà knowledge that ceachers now have-aspecfally those who are taaching these subjects on the basis of aeither a college major or minor.

In the $1981-82$ school year in Michigan, for example, wore than 36 percent of àil the junior high school mathematices teachers were teaching without a mathematices major or a mathematics minor: And for two thirds of that set, mathematics ceaching was the primary assignment.

In addition to finding some means of acquiring and stadying such data, $\overline{\mathrm{I}}$ think we need pilicy studies of State and iocal school board decisions, collective bèrgining issues, and recommendations frolin organized teachers as they relate to the ethical and academic judgments, recommendations, and standards that they hold in rēgard to teécher certification, qualification, and assignment in silience and mathematics teāching.
i think that our Nation has an obligation to its citizenny in general and to parents and chitdren in parifcular to monitor and make public the standards of quality that are being held for the elementary and jecondary teaching force In this Necion. It also has a responsibility to continuously stuiy and describe the potential consequences to students and teachers of any modifications in those otandards.

Finally, I think research is crifically needed on teacher education and the teacher education programs ir the instituty know, these folks tave been the whipplng persons of public and professionai myths for generations. I think we need to biteer understand the curricuiums that they offer, the financial an tafiticisnal characteristics and constraints that they face, the - ... ir u.. the teachiig that they afford, and the qualiffcations of the studetr bidy that they recruit, prepare; and graduate:

What I am saying is that manj of the problems that we face and many of the different viewpolnis that we he`d about teacher preparation may be most appropriately resulyed by increased understandins and knowledge. I thiuk research is obvi. .sly needed if we are ever to distinguish myths from realities, and that teacher education, like teaching; io nften the scapegoat for those who are impatient with our Nation's educiticaal progress and problems.

Thēe $\overline{1} \bar{s} \bar{a}$ paucity of research in teacicr pducsin and a montain of my ths about it. And it obviousiy needs more thought and better uiferstering on all our parts.

Commentary: Dr. Lee Shulman
Continuirs with my attemit to relate some of chis to a research agenda, I wiil make a couple of brief comments before turning it over to the third ifncussant this morning. As you know, there is very poor, if any, empirical evidence regarding the olationship between how much teachers know, as represented by their tes- scores in some areas, and the changes in test scores produced in their studeniz. I think the character of that research sioñossts that $\overline{\mathrm{i}} \mathrm{t}$ probabiy i g the wrong way to ask the question.

But there has aiso been some research that attempted to identify what kinds of difficulties are associated with teachers who lack certain kinds of depth in their subject areas. One of those sorts of difficuities seems to be particularly provoked in the kinds of settings where kids do a great deal of Independent discoviery activity and aree thue highly likely ioo come up with unpredictable; unexpected reformulations of the material being taught.

There was a dissertation at Michigan State by jan Shrojer that identified similar problems; asserting that in many ways the best defense against unpredictable, though of tē creative and inventive, responses by students was a form of instruction that accepted no unū̄ual ātudent rēsponēes. We call that teaching style the Adaire? ilazut atpla of teaching, "Damin the torpedoes; full speed ahead:"

We had some case studies of teachers who virted in that way; and the depth of their knowledge seemed to be one of : reasons they taught in a particular fāhion.

Another observacion; Judy, would be that I thisic we not ouly have to agk the question, "Do we need ore or less?" but; "How should it be organized?" I think it is quite conceivable that we don's reed any more; but that the curriculum in mathematics or science that the joiks in tiose academic disciplines provide is not organized in a mannex that is appropriate to the preparation of teachers.

I also have a hypothesis which I think I shared with you yoaterday, and that is that the curriculum in wathematies or science, if properly understiod, is not well organized for the teaching of methematiciang; efthir- If that curricuium were reformulated so as icc be organized in a teachable wry, it would also be much more comprehensible to people majoring. in matheratics or the $\bar{s} c i e n c e \bar{s}$ than it is right now.

Odus Eił́ot̄; Aésociate Birector for Academic Programb; Ā̄̄zoña Board of Regents

Af ter listening to all of the articulate presentacions yesterday and again this morning from perple who are very well grounded in research and practice in the areas of teacher education and mathematics and science education; I nust àzree that tées characterization of me as à civilian ís probabiy pretty accurate. A terim that would on-haps be a little more acnurate is "amateur."

There $\overline{\text { are }} \overline{\mathrm{a}}$ couple of advantage, to being an amateur in a crowd like this. For example, most of the time an amateur is s ifttle more easily forgtven for his shortcomings and oversights in his preseatation: Secondiy; he te often allowed to be a littie more pedsstrian in the types of things that he s.rys. So I hope you will keep those thinge in mind for me as the civilian member if this panel.

As Lee mentioned, the perspective that I bring to this conference is than of one segment of the Stāe $\bar{e}-1 \bar{e} \bar{v} 1$ governance structure of our diversified and highly decentrsilzed system of education in this country. By "governance structure" $\dot{\prime}$ mean governance units such ās the Stāe legislature; the covernor's office, the state board of education, higher education governing boards; higher education coordinating boards in some Stäes, and even local district governing boards.

With this kind of perspective and background; i read Anne's paper a ilttle differently frow the other two discussants. I viewed her paper not as an attempt to provide a deflfitive philoscphical; polished statement about teacher education, but more as a vehicle for this conference to begin to identify some of the major problems that we see and that we face in this area of téachēr éducation.

John Taylor called 1 ist fail and asked what we were doing out in Arizona In the area of teacher shortage in mathematics and science. I explained to hin that his call was very time iy because a few days prior to his call Governcr Rabbitt; who was at that time running for re-election; had issued his platfor concerning education issues in the State. And his piatform went somethin: like this:

We need to increase the university admission standards to require students to have more mathematics and science ir. high school:

We need to estabilsh summer prograus at the universities for high school students who are gifted and talented in

We should establish a student ioan program for prospective teachers and waive repayment osilgations if those teachers po on to teach in elemencary and secondary schools in the State:

He said; "Let's form summer institutions; mathematics and sciepce institutes; to ailow our ichers to upgrade their skills and to allow retraining of teachers who want to enter those specialtien."

He said, "Let's change our teacher certificarion requirements to require

He said, "Let.'s estāblish a pilot progran for ticreasing the ompensation

These are not new ideas for most of you: \quad fē \bar{a} But if think the Governoris recogni ion ion the problein is at is sísificant in \bar{t}^{i} : aneçote. it was importañ enough ts inn so make it one of his major campaig.. Issues last 「戸̄il

The other candidate íor Griornoz didn' tioue such an educationai issues component in his platform. Governor Biobltt was re-elected by a very iarge márǵñ.

I am not sure we can conclude from that that he has a strong mancate to bring about his programs in education, but that may certainly have been a part of his success. It is also significant because, as a followip to his election, the Govèrnor has recommended for the 1983-84 budget that $\$ 500,000$ be allocated to begin to implement and initiate some of these programs.

That is not a lō of money, but iooked at in perspective of what is happenigg, in Arizona and what is happening in a iot of other States, it is a
 àgenciēs à substantial reduction in thélir budget for 1983-84, a level below their current year's budget. To be proposiñ à new program in the ā āē of mathematics and science teacher training and education; I think; reflects his view that this is indeed a vital area.
 problem in mathematics and science education, I assure you it's a reai pleasure to offer this note of optimism and encouragement āe one Stāe begines to deal with this problem.

I would inke to offer just a few comments about some of the points made in Annés pap: it the identification of the problem, i think i would place a littte more emphasis on the economic foundation of the probiem: it was shlud a to by a couple of the speakers yesterday. Industries in this countiy have not kept pace with industriē in othé countries in high téchinology areas. Consequently, our indust ses are suffering, they aste scrambling, they are trying to catch up, they are being affected in the marketplace. Consequentiy, those businesses and industries are raiding our schools for employees and at the same time are demanding gradgates from our school system who are highiy skilled in mathematics and science.
\bar{I} think this is one of the major reasons this problem has gotten the attention of many of phe poifticai leaders or at least some of the poitical lezders in this country. They recognize the importance of having weli trained human cap̣ital to rebuild the economies, ooth of the State and of the Nation.

Anne suggēt̄ chàt it's time for chāge, and 1 think many arē béginaing to agreee and to support that argumint or point. Some of the organizatanal change studres I kave som have soncluded that often changes occur is organizations because of side pressures and forces or because of top-âown kinds of mandates withí th crganization.

I thfak this is one place the governing structures of oúr education systems can contrís bute to the solution of the problem. They can becnme a part of that citeside foxce that keeps this issue in the forefront and that contí ues to place pressure on our diverse and deceatraifzed system to qurappié and to deai éfectively with this probiem:

The poblem ts exacertated by the decisions of some of our governing. boards to increase high àchool grad수ion requirementes in mathematics and
 universities. As we begin tio say to the high schools; "You've got tu give students more exposure to maihematics and science subjects;" those high
gchools are faced with the frustration of wantiny to do that but inot having adequate numbers of we 11 prepared tex shers to respond to thone outside pressures.

One of the myths Anne mentions is that certificaticn waivers will bring good teachers to the ćlasaroom- Several pieople have already addressed some of the problems that arise as a fesult of giving certification wherers to people who māy not perform weli in the classroom- Waivers are certainly not the best solution, but they may be a necessary interim measure, at least until we can figure out wā̄s to improve the productivity of the teachers we have or increase the number of teachers avallable. Waivers shouid be temporary and they should also require some type of intensive training in pedagogy to strengthen people who do not have adequate preparation in that area.

While we have heard a number of criticisms of the teacher certification waiver movement, i have not heard very many suggestions from the program peesenters about what the schools are going to do if they don't get waivers for i-dividuals who may have some skili and some ability in mathematics and scierra.

A frequent complairic that i hear from people who have graduated from many of our teácher education programs is that there is too much duplication in the content of tē̃ hér education courses. They saf that ít may be possible to provide students wíth the necess̄ary skills in less time and in fewer educati h courses if we take cage look at the possibility that we may be dupilcating s: "e uf the content in those coursē.

In Arızona the State Department of Education has launched a statewide roject to fdentj =eacher. and that project has inciuded a great deai of participation by teachers tn the State. The goal is to revamp certification requirements in the sitāe to focus on specific skilis; rather than on having compiétéd certain traditiong courser that we fina as a part of most of our teacher preparation prograns around the country.

Another myth is that if we pay more, we will get the tēaciErs. Teaching is p profesgion that requires a comitment to values other than materialistic vilues. We must make it possitie; however, for those tho do hāve the value system; the skílis; and the commi ront necessary for effective téching to maiutain a reasoñbie standard of irvi g ' And 1 think we can beeí liy improving the oaiāies for nathematics and science teachers as one of the strategies for eliminating the shortage.
 swallow fur people who are responsible ior alaking decisions zout taxes. But given the condition of our eoonomy in most of our statis it so not inkeiy that State revenues and local schoo.. diétrict tā stricuures are geing fo generate the tax revenues that are ineded simply às à rēsult of economic growth. at least not during the next soutie of pears. I hope I'm wrong. I hope our ecoromies turn around fast aough and that our systems of taxatioñ wil generate more dollars based un economic growth; but that may not happen. A considerable anount oí courage and foresight would be needed by our elacted
political officials to come to grips with that problem and look at the possibllity that we may need to either reallocate from existing government services or programs or increase taxes to generate the revenues necessary to bring about changes.

Now, I would offér a more encouraging word about this teącher supply problem. An āsuociāte dean of one of our collēēs of educātion iñ Árizoña told me lā̄t week stat he is bēinning to see áew students from other programs in the untversity transterriug into teacher education programs, several from engineering programs He went on to explain that these are not students. who are fiunking out of the engineering prosrams; they are rot students who are having academic difficulty over there; but they are students who have concluded that a career in educat. fo would be much more peraonally fülfilling and rēwarding thān a cāreer iñ some engineeriñg discipline which they had earlier decided to pursue:

That is an encouraging word, and in would be interested to know if anyone èise ís begiñing to see any kind of fiow like that between the other academic programs on campus and teacher education programs.

Another myth is that teacher edưcation students spend all of their time in professional education courses. This has already been alluded to so w wll not spend a great deal of time taiking about the level to which teacher education students should gain competency in their particular discipline. But I would add just a couple of things that concern me as a civilian or as an amateur in this field. I wonder if a teacher who has not completed advanced courses can fully appreciate the significance; the importance, and the relevance of the basic courses in mathematics to the advanced courses. And in wonder if they are not nore effective teachers if they have a good grasr of the reievance ang tir rafionship between the various levels of mathematics.

Another comment $4 \mathrm{~A} t$ do not think was made eariler on this topic fis that we may be iolng a disservice to the teacher education students if we do not encourage them to $\bar{g} 0$ on and attain higher levels of competence in their field; Whether it: be science or wathematics. The reason is this: They may not be teachers aif of their working ifves; and if we do not encourage them to artaia hígh ievei of competence in théir specialty; we may be encouraging them tä, put a ifmit oun the other types op career options they may have after they decide to move on to some other type of career:

One of the proposalis that Anne made near the end of her paper was that we need to give more emphasís to the support areas in mathematics and science. I would ifke to adá my endorsement to that. i think it is very imporcant that in our teacher training prograns in mathematics and science we make aure thái
 be able to use the language clearly and to comuntcate effectively if they are going to be good teacherā. And they must hava a sensieivity to ethical and humantarnan concerns that may aris: from scientific disciplines and scientific study.

$$
325
$$

Finaliy; I have a coment about the potential role for a state-ievei governance in the strategy for addressing these problems in mathematics and science. As isentioned earlier; the governance structure includes the governor; the State legislature, and various governing boardo in the fields of education. I think there are four or five types of activities that the governance structure may examine as part of their contribution to the strategy for dealing with these topics.

Most of the governing boards, at least; and to \bar{s} certain extent other units of governance structure; have a role of setting nissions and priorities for institutions within their domains. I think they cas look at the needs, in this area as they are examining whāt are apprepriate missions and roles for their institutions. They also have a responsibility for oversight. They can press for curriculum and program review that may be needed in these areas.

In a third role; governing boards can serve as advocates for funding improved teacher education programs with a state legisiature:

Governing boards and gorernance units seem to have a ifttic more ready access to the media, to the press. They can continue to give visíbilíty eo these problems and to possible solutiong to those problems.

Finally; $I^{\text {think }}$ the governance structures have àmajor role to plāy in coordinatton. It has been emphasized several times during our conference thāt the problem before us is a compler one and requires cooperative efforts by a wide variety of actors: i tilnk those governing units who are responsible overall for the governance of the system can make sure that there are ways in which the various units iñolved in this program or in this problem can coordinate their efforts and deal with it in e very systematic manner.

OPEN DISCUSSION

DR- SHILMAN: I remind yui, Odus, that ancther meaning, perhaps the orig jà meaning of "amateur," is soreone who does the work fcr the love of it. I hope ir chat sense all of us are amateurs in the field of education and teacher education:

One observation I would make; provoked by yorg comments; i am concēēned, and I hope you will reflect for a moment, and some of my colleagues in the profession who may shere your perspective will refleci; on what may be a fundamental contradiction in your simultaneous call for greater depth of understanding of subject watter on the one hand. anc then a definition of teaching in tems of a set of skifis on the other.
i find īt remarkabie that behaviorism is dead and ainost buried in Jsychology but is so ailve and weli in the halls of poli yo It would be a 1ífie ilfe setting astronomical poícy by mandāing epicycies.

This is a very controversial issue, and I think the weight of the evidence in the research suggests we ought to be terifbly careful about-and i'll use an emotionally lajen word--trivializing the work of educators by defining what they do in terms of a set of observable sks \bar{s}; when we would never ever dream of defining the wosk of a mathematician in rerms of a set of observable

I think the evidence we have is that in ee are not particulariy fruit $\overline{\mathrm{n}} \mathrm{u} \overline{\mathrm{c}}$ Ways of defining teaching competence, and they certainly do not define the kind of competence thät will lead a person to grow in the job, which is precisely the rationale for having them hā̄e deeper knowledge of subject matter:
 of the reāsons; in my view, that teachers are leaving teaching is that we have cast tēaching ās technical work and technical activity with skilis; as opposed to professional work that requires the exercise of important cognitive judgments: I think that kind of view may well be inadvertantiy driving people from the teaching force; because teaching is seen as techinciañtype work, fot professional work.

DR. FLOWERS: First of all; I want to say what a pleasure it was to find that the first two digcusānts employ the same type of objectivity that in did.

I would like to clarify one area that perhaps did not present as well ā̄主 shouid have. As we are taiking about the depth of understanding of subjec τ matter; i am talking about a reorganization, a change in the curriculum for teaching; and for us to know the kinds of things we are going to be teaching youngsters, rather than extrame amphasis on research or very heavy types of scifnces as they are now org aized in sci re departments. And that is a differeut kind of thing; an' jerhaps my l:sentation was not slear.

DR. TAXIEY: Dr. Fiowers urnti ned a very concrete suggestion má fe was picked up by Dr. Elliott who had a counter, "raise raxes." Dr. Fiowers suggested that the salary differential be made up by part-time employment of
 to the stujents, to the teeacher, to the school system, and to the taxpayers hut unfortunately \bar{I} didn't hear what the quid pro quo for the business would bé. And i am wondering if; other than being a corporate good citizen; which unfortuately wor't make the stockholders too happy she or any of the tepresentatives of indusixy in the audience have thoughr about īe benefits to the compang jifirh gives up full-ife emplogment of what we would imagine to be à very valuād.le exployee.

DR: FLOWERS: I think; one; it could eniarge the pooi for the inuastry or fō the business itgeif. Another, of course; could bu a tax incentive if thac sort of thing was built in.
 stockholders want the officers of the company to make profits for them, not for all automakers rather than General Motors. But other than tax incentiveg; does anybody have ixy idea about how the zompantes could benefit?
θ

DR. SHUIMAN: Is there someone from industry who would like to respond?
 gues ; íe assue for us from incustry is really a longitudinal one. Assuming that we are iot in \bar{a} liquidātion process $\bar{s}=\bar{a} d$ d hope we are not-we are going to need qucilfied graduātē todāy, next yeār, 10 yeārs from now, 20 years from now- And if the school systems are nct providing those, then obviously we zre going to have to get involved-and we are; because we have thāt concern.

So if it means employing a teacher for the summer, cail it an outreach effort, if you wili. Trying to measure it from a stockholder's standpoint may be a little difficuit; but we think the issue is much broader than this quarter's profitability.

SESSION VI
 SCHOOL SYSTEM RESPONSE TO THE PROBLEM OF TEACHEP SHORTAGE IN SCIENCE AND MATHEMATICS

THE TEACHER SHORTAGE IN MATHEMATICS AND SCIENCE:
THE LOS ANGELES STORY
Rosaiyn heyman, Assistant Superintendent of Secondary Education; Los Angeles Unified School District

For the past several years; the shortage of qualified mathematics teachers hās been severé; for the past 2 years; the shortage of science teachers has become $\bar{s} \bar{s} \overline{e r i o u s ~ c o n c e r n . ~ A m o n g ~ t h e ~ f a c t o r s ~ c o n t r i b u t i n g ~ t o ~ t h e ~ s h o r t a g e s ~ a r e: ~}$

- increasing numbers of tēachers, especially in wathematics and folence; are leaving the classioom for higher paying jobs in government and industry. Some private corporations attract teachers becaused theyw offer the sdded benefit of paying for college and university courses leading to advanced degrees;
- a declining number of coluege students are pursuing teaching careers in every subject field. Among the 1982 entering freshmen at U.C. Berkeley; less than 1 percent specified an interest in teacling;
- increasing numbers of mathematica and science teachers are reaching retirement $\bar{\varepsilon} g e$;
- many 'lousewives with teaching credent fials wo child have been attracted back to teaching in times of emergency are aiready empioyed fuil-time in the work force.

In order to teach in a pubilc school in Californiáa a teaching credential (license) is required, which is authorized by the California Commssion for Teacher Preparation and Licensing: Full credentials are issued, upou recommendation of a coliege or university, to teachers who have successfully completed the required courses in their subject field and education and who have completed a studeut teaching soignment In order to help solve the teacher shortage problew, the coumission issues emergency. credentials for the curcent year oniy to applicants that the District finds promising and is wiliing tō híre. Māthematłcs and science emergency credentialled employees have varying jegrees of preparationfieids, but most with no credential at all. Therefore, holders of emergency cridentials must, while they are teaching; compléte some university course work and pass fiecessary examinations in ordér to obtāin a full credential or to hāve thēir emergency credential renewed for à séond yeār.

One weasure of the teaching shortage lis the number of emergency credentials issued totesch mathematics and science. in the 1980-81 school year; within the Los Angeies Uotfied School District (LAUSD), 169 emergency wathemates credentials were isaued; iñ the $1981-82$ school year, this number rose to 333 in mathematics ani 82 in science. In addicion; the District granted another 157 Iimited mssigament permits to teachers with credenciala in other subjects so that they could fill in and teach one or more mathematics or science classes. In 1982; the figires climbed to 508 emergency mathematics credentials and 89 emergency acience credentials. 1

Large numers of these teachers lack adequate preparation: For example; of the 1,444 teachers teaching one or more mathematics ciasses in mecondary chools in 1981-82, an informal sampling revealed:
38% were mathematics majors (547 teachers)
30% were mathematics inors (436 teachers)
32% were neither mati satics majors nor minors (461 teachers)
Last Spotember, the district was able to open school with a contract zeacher in every classioom for rhe first time in 12 gears. This resuit came about in large measure because of the cifficule economic biviacion. During that past sumer, the Fersonnel Division interviewed hundreds of applicants, जany of whom appifed because th were inable to obtgin amplogment in govex מment or industry.

The shortage will, however, continue to grow for these reasons:

- as econome conditions improve, many teachers will return to the higher paying jobs in goverament and industry;
- 1ncreasiag numbers of mathematic̄ and science teachers are reaching retirenznt age;
- State and City Boards of Education are proposing increases in the number of gears of mathematics and science required for graduatłon frou high school;
- universities and colleges are increasing entrance requirements.

As equirements are increaged, shortages become preater, To acid one-hā́f year of mathematics would require 121 more wathemarics teachers; to add i year of sciencs sould require 162 : sore science teachers.

What bir been doue to solve the problem? A reviéw of the pase 20 yeara is in ozrer.

[^3]In the $1960^{\circ} \bar{s}$, the Cuban crisis brought many learned refugees to this īand-mathematicians and scientists; university professors and schooi teachers. Representatives from the District went to Miami to recruit. Prejiminary credentjals were issued which allowed these professionals to teach while attending required university ciasses in the evenings and on weekends. The university ciasses couplē with the on-the-job training that each school provided were not enough to hold many of the se teachers. The honor and respect given the teacher or professor in Cubā wās not found in the junior high schools of Los Angēlē. Thosè who were most successful were alert and . perceptive in the clāssroom and well enough organized to readily implement the classroom management techniques thè were being taught at the iocai schoolMany left teaching; those who remained have continced to provide exceilent instruction for young people; several have become highiy respected counselors and administrators.

The Engineer Layoffs

In the early 1970° s, when the defense contracts in the Los Angelēs arēa were moved to other parts of the country, industry was compelled to lay off hundredés of énǵneérs. These massive layoffs provided the District once again with a source of personnel willing to teach mathematics and science, and the District recruited large numbers of them. The District gave them jobs; helped them obtain the preliminary teaching credential, made the arrangements for them to enroll in aniversity or college to complete the necessary coursework in education. On-the job training was provided by the District and the focal school, and the college or university aiso offéred some supervision of Instruction. As with the Cuban refugees; the engineers were unprepared for what the junior high school hád to offer: Many soon discovered; or rediscovered; why they had chosēn nōt to teach in the first placee. Teaching is difficuit' The engineers; like the Cubans, were very knowledgeable in their subject arēa, but were not ablē to apply effective teaching and ciassroom management techniques and did not have any background in iearning theory. Large numbers left the profession before completing their training;
 doing an excēllent job:

Sumimer Programs

In the late 1970 : ; the District started summer programs to retrain substitute teachers; elementary teachers; and secondary teachers with credentiais in other subjects. The Commission for Teacher Preparation and Licensing created a credential for these people to obtain- the Supplementai Authorization Credential. A teacher with a credential in another subject could take 30 quarter units in specified areas of study, such as mathematics or science, and obtain a supplemental credential. For the mathematics authorization credentíal, \bar{l} year of college calculus is inciuded.

One of the District's first éfforts was a 6 -week summer workshop taught by an experienced District teachér. The teachers attended for a fūl dāy for $\overline{1}$ weeks and were paid a stípend: The dropout rate wās high, but those who did finish stayed with teaching:

In the 1970 's; science efachers regularly participated in NDEA workshops offered through the colleges and universities. These workshops helped teachers update their knowledge and skills. Much of the funding for these fine science workshops is no louger availabie.

Internship Programs

Two years ago the District contacted the Commission for Teacher Preparation and Licensing and asken for permission to institute a number of expertmental internship programs. The request was granted. The District held a consortium of ali the local σ eges and universities and approached them with the fuea of providing inter.in ip programs for District employees who
 conjunction with this, thè District created an advisory board which included mathematices and acience tēachers sēected by the teachers' union. Ās the collēgē and univerāitiēs submittéd thélr proposāls for experimentā internship programs; the advisory board made suggestions and uitimately approved each one and sent it on to the Comission for Teacher Preparation and Licensing; which granted final approrai- Some were successful; others were not. Some of the coileges and universities had suition fees that were prohibitive for working teachers; and the district was not in a position to help financially. There was great interest in these interiship prograns in the Spring of 1980, when the district had announced a lärge teacher layoff siāted for June. When June came, the District did not have to go through with the layoff; and so interest in the internship piograme decinned.

The next step was to provide programs for teachers holding emergency credentials to get full credentials. The eame patteri was used. The universities and colleges were contacted and made awaic of the needs of the reà chēre. Thēy all cooperated and offered to provide appropriate summer programs. The District then compiled a list containing the name of the university or college; the contact person, and the telephone number. This notice was sent with a personal letter to every teacher holding an emergency eredential; urging that teacher to contact one of the schools to enroll in a training program leading to the full credential. This program was very successful and is being repeated yearly.

The latest District effort has been to embark on a joint universityl District jnternship retraining progran to train mathematics teachers. UCLA was sélected, primarily because it agreed to match the district moñēary investment in the program. Out of 105 applicants, 41 were selected, and 29 are $\overline{\text { a }} \mathrm{till}$ in it. The program started last summer with the trainees taking university classes, foilowed by a 3-week workshop offered by the district's mathematics specialists. The teachers were paid for the 3-week workshop. Their university tuition was also paid, so their major expenses were for books and parking. During this school year, the trainees are continuing in à unfversity course and a practicum each semester. Next summer, they will complete the training with a 9 -unit undversity segment. During the year; the Dis̄trict hās provided à füll-time resource teacher who visits and supervises the work of the trainees in their juntor high school wathematics ciasses and provides individual and group inservice trafning. The decline from 41 to 29 can be attributed in large measure to the difficulty of the mathematics
courses required by the university. The university soon recognized that the trānēes needed to s̄tāt àt a lower lēvel and then adjusted thēr course work
 and clā̄̄̄room management techniques. The program is considered to be a success.

Investment in peopie

Lāte ias \bar{t} year, the legisiature funded añ aproved the "investment in Peopie" program: Administered through Łos Angieo County Schools; the program has severai facets:

- local schools may write-proposals for funds fordevelopment of thèir stāf in mathematics, science or computér litéracy;
- the training of the 29 teachers who are in the LAUSD/UCLA-sponsored mathematics training program will be continued; and
- universities and colleges may write proposals to help train emergency credentialees in mathematics and science (both USC and Calfornia State University at Los Angeles plan to submit proposals).

Partnerships with Industry, Government, and the Military
To resolve the growing shortfall of mathematicians, engineers, and scientists needed by industry; govermment; and the wilitary; from time to time various partnership programs have been proposed. Last fall our Superintendent; working with the President of Cal State Dominguez Hills, proposed a plan for mathematicians and scientists in industry to donate several hours a week to instruct high school pupils. For many reasons; this "Pilot Program" has not yet started.

In recent weekes, the District has been contacted by the Partnership for Development of National Engineering Resources Project, a group from industry and the militiry. The group is interested in increasing support of university and secondary school science and engineering facilities and in providing additional incentives to attract science and mathematics teachers āt the high school and junior high school levels © Through an à hoc committee, representatives are presentiy expioring a number of possible action items:

1. To sponsor and support legislation which would allow for incentive payment to shortage-field tēachers hired in the State of California.
2. To review national legisiation directed at improving instruction in science and mathematics; with the intent to sijpport and iobby for ís passage.
3. To consider the funding of science or mathematics chaire at iocal high schoois which would provide éxtra teachers in those fiéids, reduce ciass size, increase teacher prestige; and offer outstanding instruction.
4. To provide one or two periods a day instruction from engineers and mathematicians assigned from the military and industrial sector.
5. To provide engineers or mathematicians from industry to act as professional experts; releasing a classroom teacher who then could visit industry or observe other outstanding teaching.
6. To provide enrichment instruction by engineers and mathematicians from industry and the military.
7. To provide funds from industry for the purpose of retraining mathematics teachers of and for the District. ${ }^{2}$
8. To provide equipment or funds for equipment to upgrade the mathematics and science departments in junior and senior high schools.
9. To study the possibility of granting sabbatical leaves from industry and the wilitary to engineering and dathematics staff members to teach in the public schoois for a year. The haif salary from the índustríai complex plus thé regular sālairy paid by the District would be enough to compensate those specialistē at their normal rate.
10. To provide sabbatical-type leaves for teachers to work In industry and therefore become upgraded in the fields of engineering; mathematics; and science.

The group plans to develop a $\overline{5}$-minute video presentation to use to soilcit funds from large industries.

Fellowships

Another group of representatives from business is presently conferring WIth the District about the possibility of offering 50 summer fellowships to mathematics and science teachers to upgrade their skilis.

MESA
The Mathematics, Engineering, Science Achievement Project (MESA), active in 30 calífornia school dis̄tricts, hās ās its purpose helping minority \bar{s} tudents go to colleges and universities to become engineers, mathematicians; and scientists. It has chapters in severai los Angeles Unified School

District high schools. Representatives from business and industry work with minority students who want to go to college to insure that they succeed by providing tutoring, fleld trips, study sessions; and generaliy providing a high level of support to the schools. The group raises funds from industry and receives a matching grant from the State legisiature.

Task Force

Another proposal is the formation of a task force under the leadership of the State Department of Education which would include representatives of business; industry, government, the military, and the schoois to explore ways of solving the shortage of mathematics and science teachers and to keep up to date those presently teaching mathematics and science.

Anyone Can Tealef:-A Myth

Experiences have shown that the fact that a person is knowledgeable in his subject field does not necessarily mean that he can teach others. Thérē are few "born" teachers; yet most people can be trained to become adequate, if not outstanding, instructors. The skilis, strategies, methods, and techniques can ail be learned, but they cannot be learned overnight, in a week; or in one crash course. The semester of student teaching under the supervision of a master teacher is still an important part of learning to teach. During this t̄raining period, the student teacher has an opportunity to try out sútrategies; $\bar{t} \bar{o}$ apply learning theory, and to conduct dally discussion and evaluation of each planned lesson with the training teacher.

E.T. = Educational Techniques that are "Out of this World"

When mathematicians and scientists and others want to become teachers, they must receive training in learning theory, leārning otyles; classroom management techniques, and in implementation of the teacher-directed iesson. Many universities and colleges offer very little in the way of methodoiogy. it becomes necessary for the school district to provide inservice education. The district providés extensive stăf development programs fō teachers almed $\bar{a} \bar{t} \overline{i m p} \bar{p}$

Sciencē and "Mathemagicians"

A good teacher candídate is a bright; knowledgeable (in his subject area), aiert, sensitive, patient, enthusiastic person with genuine interest in young people. With these qualities, such a person can learn and become a top science teacher or "mathemagician."

Long Range considerations

While this paper has dealt with some programs in place; and some immediate $\bar{p} 1$ ans for the near future; it must be emphasized that the problem requires fong range solutions that wili attract the very best mathematics and science majors to the teaching profession. In order to do that we must:

- reemphasize that teaching is a profession;

$$
\text { ट!!: } 197
$$

- seek public support for reimbursement for teachers equal to that of other professions;
- seek legislation which. allows the school district to be competitive in sālāiēs for shortagefield teachers;
- constantiy remind coliege students that teaching is one of the most exciting and personaliy and psychologically rewarding professions there is; and
- instill a renewed self respect in the teacher, which comes from a feeling of security on the job, adequate salary, and professional recognition for a job weli done.

Schools of the future

If long range solutions do not come about, the Nation may be forced to implement, before the end of this decade; the school of the future. In that schooi; great and important concepts; knowledge and understandings will be presented by waster teachers on videotape: Students wilinternalize these concepts by interacting with their own personal talking computers. Small group instruction will be conducted by lése fully trāned laboratory
 skills. Mastery of essential skills will be a prérequisite for advancement to higher levels of learaigg. The progress of each student will be carefully monitored and recorded by computers; and it will be the function of administrators and counseiors to guide each student through an individually tailored program aimed at insuring that each student reaches his highest potential.

a PRIS ${ }^{2}{ }^{M}$ - A PROGRAM FOR STUDENTS BUILT UPON PROFESSIONAL GROWTH EXPERIENCES FOR TEACHERS

r
Douglas Seager, Curriculum Coordinator; Rochester (New York) City Schools and Industrial Management Council

In 1981 the National Science Teachers Associjtion surveyed high school principais from across the Nation in an effort to ascertain the percent of newly employed science teachers who were unquaiffied. Here's what they found. In nine census regions; the lowest percentage they found was 9 percent; the highest 84 percent; and the average was 50.2 percent: i.hen compared region by region with the pervious year, three regions were down at most 3 percent, while five had increased one of them by 17 percent. But these statistics only indicate a problem with newly employed science teachers. Lét us look at teacher shortages nationwide by State. In 1980-81 there were 43 States showing a shortage of physics teafhers, 35 were short mathematics teachers and 35 were short chemistry teachets. In 1981-82 even more Stātes reported shortages of mathematics and chemistry teachers; although one less State reported a shortage of physics teachers.

In ōē weil-tōdo suburb of Rochester, N.Y., it took over a year. to fili one physics opening. Just last week two of three candidates for a permanent substitute position in junior high science were unsatisfactory; and the third hā̄ changed hē mind about teaching-aprefering to be dropped from the sübstitūe list.

The Program for Rochester to Interest Students in Science and Mathematics (PRIS ${ }^{2}$ M) was estabíshéd in $197 \overline{8}$, not to respond to the probiem of teacher
 éligible tō entē engineering and other high level science programs. A relatively small effort, $\bar{P} \mathcal{R I S}^{2} M$ has nonetheless found itself cioseiy associated with many concerns regarding science education. In retrospect it may be thāt PRIS ${ }^{2} M$ ' \bar{s} appearānce wās inevitable. The crisis now surfacing
 workin̄ in Rochestēr $\bar{a} n d$ may prove to ke worthy of considération on \bar{a} significantly broader scale.
 Wilís Sprattíng, a senior official with the xerox Corporation and member of the National Advisory Committee for Minorities in Engineering (NACME);
 of Rochester; N.Y.; to study the problef of minority parity in engineering. , Soon after, the IMC established a task force to evaluate the challenge locally and; if appropriate; to establish an idolementation plan. . PRIS ${ }^{2} \mathrm{M}$ is the result of this extensive evaluation effoft.

Locáted in \bar{a} high technology center (Rochester), the City School Distict hās rē̄alizē \bar{a} vēry low number of minority students electing to take science courses; even fewer majoring in science and mathematics. In two predominantly
minority high schools; we found a total of five students taking physics in 1978. Consider the following: approximately 40 percent of the Rochester work force is employed ip industry, a total of 140,000 people. Most of our companies are based on technological products and services; there is almost no heavy industry here. As a consequence, technical and engineering skilis are In great demand. Because so few rinorities ever consider engineering as a career; opportunfities for this segment of our population to acquire positions leading to professional and managerial rank are limited. Concerns on the part of both education and industry have resulted in a joint venture to increase the number of minorities majoring in science and mathematics so that more students will eventually be available to the increasing technicaily oriented work force in Rochester. In the long ruin, our goais are in keeping with those of NACME-enroliment in engineering and other techuical programs by 18 percent of Rochester's minority student populátion. Neariy all of PRIS ${ }^{2} \mathrm{~N}^{\prime}$'s programs take place within the City School District, with the full support of the Board of Education and Superiñtendent of schools. In fact, one-third of the Board of Directors of PRIS ${ }^{2} \mathrm{M}$ ī made up of school district personnel. One-third représents thé Rochéstē commuity, and one-third comes from industry. This group encoupasses considerable resources and heips provide many of the peopie; - materiāes; end "in-kind" contributions which play such à signifícant fole in the total program.

A 10-year funding comitment was màde in 1978 which will total approximately $\$ 2$ million in direct contributions for operating expenses and prograñ activities. Numerous and varied in-kind contributions make the total fiñancial comitment well in excess of tiat amount. Entirely funded by some 26 local industries; PRIS ${ }^{2} \mathrm{M}$ recetves an average of $\$ 200,000$ per year, nearly half of which supports projects directly impacting on students. Two full-time staff members carryiout the program activities. One curriculum coordinator with extensive curriculum development and teacher training expertence works hand-in-hand with the science/mathematics department and staff of the Rochester City School District. Primarily responsible for initiating and implementing academic programs, curricuium, and summer activities, the curriculum coordinator also links the school system with mary resources from local industry. The communty relations coordinator enjoys a high degree of acceptance from the minority communty and bridges the comunity, education, and industrial resources while promoting the goals of the program to leaders of these organizations: An executive director from the Industrial Management Council oversees these ifnkages and promotes program support àt the highest levels of industry, education, and the commity.

Interventions

Dwinding interest in science during the cruciai ages from eight to thirteen yearā prompted our first levei of City school district program support. If studente do not íike science during the middle/junior high years, they are not ifkely to seiect science courses at the high school level. Our response to this \bar{s} dilemma was to initiātē à supplemental curriculum project designed $\overline{\text { to }}$ provide a motivational alternative to the existing curriculum. We looked at the problem this way. Envision a fumei, widest at the sixth grade entry level end, but considerably narrower at the midpoint constriction where ninth graders enter high schooi. The spout represents the narrowest part-
consistent with high school enrollment in science. In terms of student interēt, we want to expand the entire funnel and considerably widen the spoút. As that happens the number of minority students electing additional science/mathematics courses will increase:

Supplementai PRIS2 ${ }^{2}$ activities for sélected minority high school students entering the spout of this funnei must be motivationai; they must ocçpr frequentiy and consistenty, and they must be appropriate. to these encs PRis ${ }^{2} M$ teams have been established at every grade level within each of 'the city high schools. Here the PRIS ${ }^{2} M$ interventions are certainly noteworthy.

Students sēected for membership must be enrolled in Regents-level coursēs in both science and mathematics: Further, they must maintain passing grades and continue to enroll in the Regents-level courses. Ninth graders would necessarily then follow a 4 -year sequence in both discipilnes. Required team activities include one monthly visit to a preplanned industrial presentation which emphasizes the importance of at least one fundamental science principie upon which that industry's product (s) or service(s) are based. (See Appendix A which ilsts industrial presentations.) Conducted during school hours; but iocated at an industriai site; the presentations are seen as a function of the student's school program; although initlated; developed; and funded by PRIS ${ }^{2}$ M.

One additional required team meeting each month provides opportunities for a variety of activities including science fair project development, career awareness seminars, financial aid programs for seniors; and speciai seminars/ programs on science/mathematics curxent issues. Heid after school hours; these meetings are conducted jointly by a team "Coach" from the school building and several. team "PROS;" or role models from one or more of the local industries supporting PRIS ${ }^{2} M$. Social events, fund raising activities; and a team comradery develop a sense of belonging as well as interpersonal support systems between team members. For minority students; heretofore noticeably affected by a negative peer pressure tovards science and mathematics, the team concept has played a significant role in reversifig this peer pressure, now making it positive.

Additionaīy, three special summer programs for PRIS² \bar{M} team members round out these unique interventions for our students. A 3-week sciencel Mathematics Summer Workshop emphasizés direct learning "hands-on" experience for 100 ninth graders. Foliowtng the tenth grade a l-week biology-based camp experience continues the sequence of speciai prognams. After the eleventh year, a 9-week "orientation to Engineering" program includes 1 full week āt à iocai universíty followed by 8 weeks of internship training for which stigdents are reimbursed by the incustry in which they work. Under direct professionā supervision, these students work in the laboratory, computer center, engineering facility, or other technical operation The PRIS ${ }^{2} M$ program enjoys considérāte status and is credited with changing noticeabiy the attitude and work ethic of many of our students. They simpiy seem to bé different students as entering senfors than they were as deparing juniors only 2 months earlier.

Teacher Involvement

Teacher "burn out" is often blamed for conditions which interfere with the deiluery of good science education. This includē \bar{a} wide spectrum of concerns such as "too much to teach;" "the, kids are not interested, "the school does not support science," "too many nonteaching duties;" no variety, in my teaching," "no consistency in my teaching assignment," and "parents do not support science." I believe "burn out" indicates a lack of satisfaction and incentive for the job of teaching science. Many of the above concerins can be. blamed for this and certainiy add to the "drudgery" of teaching science ass perceived by many sciencé teachers. The stātus of science education has been lowered to second clās̄ throughout the school curriculum; and the role of sciencé in our society generally has resulted in a populace which is iargely scientifically ilinterate.
 industry for better paying jobs; others change careers to escape bells; cafeteria duty, and dwinding student interest. But still I attribute many of the losses to the lack of professional satisfaction and incentive. To quote Tom Lamme in a recent (December 1982) letter to the American Federation of Teachers (AFT), "Many quaiffied teachers are dissatisfied with more than their economic status: Once they have mastered the challenging emotional demands of teaching; many discover that the intellectual challenge is inadequate. They are bored....Too many teachers can only watch as the exciting sweep of technological progress passes them by: They may try to keep up as nobbyists or readers; but there is ifttle opportunity for them to become involved firsthand. School districts are content that ciasses are "covered' and provide lttle incentive for coursework beyond a certain level. Teachers who pursue their interests in technology at their own expense often find themseives in demand by industry. The next surge of industrial expansion wily take more of these teachers out of the classroom and open more attractive options for those qualified graduates who are needed as new teachers:"

Can anything be done about this? pRis ${ }^{2} \bar{M}^{\prime}$ s long term objectives inciudè the development of positive attitudes and renewed enthusiasm on the part of science teachers for the career of teaching science. Effortsin this direction are multifaceted and provide tēachers with a variety of professionai experiences for which they are employed durin̄ out of school hours and summer vacation.

New Curriculum Development

To date the most significant of the professional opportunities has been the formuiation and development of an entirely new junior high school/middle school science curiculum for the Rochester City School District. This effort alone hass diréctly involved 50 teachers over the past 5 years and has resulted in añ uñque process skilis curriculum which incorporates several very, special roles for the science teacher:. In fact; as in any curifulum development project; the commitment of the principal contributors extends well beyond the initial involvement and often results in increased motivation, renewed enthusiasm; and increased self-esteem. This aspect of PRIS ${ }^{2} \bar{M}$ represents one of our major responses to the problem of "Teacher Shortage in Science and Ma thematics."

Although the entire process is important to the development of new curriculum; i wili discuss here oniy the salient features pertaining to teacher motivation and incentive. First; ēach séiected science and mathematics teacher becomes the principal author of one completely new science unit. All of the principal authors also develop at least one module \quad ? (activity) for each of their counterparts' unites. Social studiē writeris develop modules for each principal author's unit, while an Engilish/reading

- specialist oversees thé grámimar, reading level, and appropriate student jargon. A graphics specialist works with all writeiss, and a grade level project coordinator supervises the entire process. Checks and balances throughout have helped to ensure that the overali unit objectives are indeed satisfied by the content developed for each unit. The resuiting science unites soon appear in pilot ciassrooms where they undergo intense scrutiny.

Pilō tésting iss; of course, carried out by science teachers, in many cases different teachers than those who authored the material. This level of involvement requires inservice training séssions (conducted by the unit author) and critical fēedback sēssions which enhance thé final curriculum format and content. Pilot tésting is considered nearly as important as the author/teacher involvement and expands the scope of this project in terms of the total number of professionals.

Summer School Staff

Teachers work hand-in-hand with professional minority role models to deliver the three summer programs referred to earlier. Dur 3-week 1ong. Scfence/Mathematics Summer Workshop is managed by one mathematics teacher, who essentially fills the role of principal for this program. The teaching staff consists of six additional teachers who have found their summer experience so rewārding thāt they begin calling in to inquire about preparations and plàns $\bar{a} \bar{s}$ ēarly $\bar{a} \bar{s}$ Februãy. By the way̆, some of the summer workshop activities have found their way into these teachers' regular classrooms, and a few activities are now built into the overall curriculum project mentioned earlier.

Addtitionally, two teachers conduct a special science camp for post-tenth grade students; and two others teach during the 1-week "Orientation to Fingineering" for post-eieventh graders.

Even more unusual perhaps are some of the specific components of the PRIS ${ }^{2} \mathrm{M}$ curriculum. Let me discuss how some of these components tend to blend many of our concerns regarding the status of science teaching into a functional model-at least on a small scale.

Unique Features of the Curriculum

The curriculum development process represents a unique kind of teacher. inservice training for the writing staff. Our process combines research on science teaching from the National Science Teachers Association (NSTA), studies regarding the early adolescent from the National Science Foundation (NSF), trends in science education from the National Assessment of Educational Progress (NAEP), current literāture on science activities; and process skilis
appropriate to the junior hígh school student. Furthér, consultants have impactē $\bar{o} \bar{n}$ the thinking of authors/téachers $\bar{s} \bar{s}$ they help to formulate goals and techaiques désigné to déliver sciencé to stūents iñ a motivational way, while incorporatigg meaniggul science skilis and experiences.

Once the curriculum materials have been prepared, the writing staff become the teacher trainers for a cadre ōf $\overline{\mathrm{p}} \overline{\mathrm{I}} \overline{\mathrm{o}} \overline{\mathrm{t}}$ teachers. in this way the curtent research findings as well as the new activities and approach to teaching
 that the writers and pilet teachers work together iñ the school district providing impediate féedback añ support when questions arise- Thís invoivepent with writing and teacher-training seems to enhancé their commímeñ to the science teaching professiong to say nothing of their increased enthusiasm for teaching a unit which they authored!

The Curriculum Format

Also unique to this curriculum is a degree of flexibifity which allows the teacher some chotce of units to be taught. Required units will ensure that bastc process skilis are covered. Choloe units may be drawn from erepegtoire of other PRIS ${ }^{2} M$ units; or even a strong "contept" based or "textbook" unit of the teacher's chofce may be included. As students in junfor high school need to learn to make decisions, so are feachers asked to do the same. if for example; a teacher perceives the need for hisher ciass to study certain. content areas, then the opportunity exists during the choice units to do go. Still the overall emphasis on development of process skills will not be diminished. some téachers; iess wiling to forego their traditional curriculum, have accepted our new approach because it doesit limit them frou teaching a favorite unit or chapter from their own repertoire:

The Teacher Module

Most significant of ail the unique features perhaps is the dēvelopment ank incorporation of the Teachèr Module as a part of the new curriculumo Simply stated, each science teacher is required to carry out some form of ongoing science exploration and to continuously share both tho process and the resuits with students. The importance of this type of role modeing should not be minimized.

When students perceive their teachers to be actively involved in their chosen field personaliy as well as professionally, the dēveloprent of a role model image begins to form. This image may very well enhance the status of science in the eyes of our young people, since their teacher is seen not only to be a teacher of science, but one who finds the tenet's of the profession worthy of being incorporated into private life.

Many teachers exhibit their particular field of expertise beyond the classroom: Music teachers are likely to be involved in the performing arts by playing in.a concert orchestra, a local band, or by teaching youngsuers music through private lessons. Physical education instructors often are involved in sports and physical traintig outside the school day. to a somewhat lessē extent, teachers of other pecialized subjećts continue .to pursue various
facets of their training through personal time activities; such as the English teacher who writes poetry, the history teacher who serves as a Community Historian or the industrial arts teacher who designs and builds furniture as a personal business.

The "Teachèr Module" is the vehicle which allows the science teacher to role model the scientist. It formally establishes a place in the curriculum for the teacher to select a problem; activity; study; or science-related hobby to pursue and share with the class on an ongoing basis:

To encourage this; $\operatorname{PRIS}^{2}{ }^{M}$ has initiated several incentives for science teachers. First; the Rochester Council of Scientific Societies (RCSS) hàs enthusiastically begun a serles of meetings between active industry-based research scientists and city school science teachers. Major outcomes of the - first of these meetings include a review of research principles used by active scientists and a discussion based on some of the current research in progress right here in Rochester. Also, because RCSS provides many of the local science fair judges, considerable discussion centered around the attributes of a good science project, inciuding heavy emphasis on process, diligence, interpretation of data, and formulation of new problems. The second incentive; offered by the City School District (CSD), is a small grant for special equipment or materials needed by the teacher for his/her research project. An unstated incentive resulting from direct contact between scientists and teacher is the development of personal contacts which will énhance the delivery of science to our students.

One anticipated long term outcome of this relationship between science teachers and scientists is the eventual utilization of teachers by area scientists for carrying out some level of supplementai research in the science classroom. Beyond this, we anticipate some degree of significant summer employment for selected science teacher researchers.

Program Results

Of the fifty curriculum developers involved with PRIS ${ }^{2} M$, two are currentiy enroiled in $\overline{\mathrm{P}} \mathrm{A} . \overline{\mathrm{D}}$. programs, concentrāang in the field of educational evaluation, one editor now edits the Science Teachers Association of New York stāe monthly newsietter, two are currently editorsjsupervisors for final editions, and the rest are gtili teaching. There have been no los̄sē to new careers! By way of contrast, during the same 5-year period, 18 other CSD classroom science teachers have ieft the ciassroom altogether.

Over the past four years, $16 \overline{9}$ students have participated in our Orientation to Engineering program. One hundred eightēen are now high school graduatés; $\overline{6} \overline{6}$ are currently enrolled in college; and 33 are now in engineering schōols.

Recommendations

1. Develop a process for upgrading the status of junior high/middle school science eudcation; inciuding a process for identifying and sē̄écting science teachers committed to working with the eārly adolescent-
2. Support the development of junior high/middie school science curriculums which are based on:
a. deveiopment of basic process skilis and integratē procēs̄ skills;
b. providing students with some choice of topics within the curriculum; and
c. requiring some forin of student long terul study or project as a component of the curiculum.
3. Encourage and support the participation of science teachers in the dévelopment of curriculums, curículum revision; inservice training; pilot projects; and ougoing revision and evaiuation of local science programs:

APPENDIX A

INDUSTRY PRESENTATIONS

INDUSTRY

Bausch and Lomb
Case-Hoyt
Dupont
General Ràiway Sígnà
Gieason Works
Rodā Apparatus Division
Kōāk Park Division
Ragu' Foods
R. F. Communications

Rochētè Gās and Electric
Rochēstér Products
SYBRON/Nalge
SYBRON/Taylot
Xerox

TOPIC

Optics
Color Reproduction
X-Ray Technology
Eiectromagnetism
Motion Transfer
Microprocessors
Chemistry of Silver
Microbiology
Sound Waves
Power Generation
Alr Pressure
Latent Heat
Electronics
Computer Afded Design

TEACHER SHORTAGE IN SCIENCE AND MATHEMATICS: WHAT IS HOUSTON DOING ABOUT IT?

Patriciā.M. Shell; Superintendent for Instrucrion Houston Independent School District

There were days during the $1978-79$ school year when as many as $\overline{6}, 000$ secondary students in the Houston Independent School District sat in mathematics or science classes without a certifted teachér. On September 1 , 1978, there were 47 secondary science and mathematics teacher vacancies in the district. On September 1, 1982, there were two mathematice teacher vacancies and one science teacher vacancy. This dramatic chānge resulted from specific actions the district, the Nation's sixth largest; has taken to address one of éducation's most criticāl problems.

It is important to have an understanding of the circumstances which were the impetus for the district's actions. in the second half of the $1970^{\circ} \mathrm{s}$; the Houston Independent school district was facing many of the problems common to urban school districts across this Nation. Approximately one-third of all pubilc school children are in urban districts which are responsible for educating a mobile population, with large numbers of chitidren who are economically and educationally disadvantaged; bilingual; or from one-parent families or families in which both parents are employed.

The Houstou Independent school District provides an example. Approximately $195 ; 000$ children; or one-tenth of all children enrolied in pubíc schoois in Texas; are enrolled in the Houston Independent School District this current school year. The atudent body is 43 percent black; 32 percent hispanic, and 22 percent white, with a growing number of children who are Asian/Pacific Ī̄lāndē̄̄. Approximately $6 ; 000$ pupils are children of undocumented workers. This year $29 ; 000$ children have been identified through testing as having Limited Engilsh Proficiency (LEP). While the majority of those have Spanish as the other language; 96 discrete dialects have been identified. Compensatory education programs serve over 50,000 children, and àpproximately 100,000 are eligible for either free or reduced cost lunches.

There are 20,000 handicapped children in programs of spectal education. of ail pupils, 70 percent have neither parent at home during the day and 38 percent come from single-parent homes. The mobility rate for the diatrict as a whole is 39 percent, and some inner-city éiementary schoolē hā̄e à 99 percent mobility rāte. A major school-operated transportation system carries students to the 240 campuses sceattered throughout the 311 square miles that comprise the district An operating budget of approximately $\$ 500$ milifon is approved for the current school year.

To $\bar{a} 11$ of these complex factors; add the problems of sheer size, the difficulties of moving about in a large ctty without an adequate mass transportation system; the media's continuing portrayal of urban schools as places of violence; and the discrepancy between teachers' salaries and saiaries offered by business and industry in a metropolitan center dominated by finance
and the petrochemicai incustry. These are the factors which contributed to the increasing difficuity the Houston Independent School Disicict was hāving in. $1978-79$ in filiing science and mathematics teaching positions, éspeciāly iñ the inner-city schools where high staff turnover was common.

THE PROBLFM

On September 1, 1978 , there were 34 secondary mathematics teacher vacancies and 13 secondary science teacher vacancies in the Houston independent Schooi District. With each teacher scheduled to teach five ciasses a day; this meant that a total of 235 classes of mathematics and science, each with an average of 25 students for a total of at least 5,875 studeñes did not have a certified instructor. Investigation has shown thā there are probably large numbers of students who graduated from cértain large high schools having recéved nearly ail of thér secondary science or mathematics instruction from substitute teachers.

Nō surprisingly, there was in this same time period increasing evidence that while achievement test scores of the Houston Independent School District elementary level students continued to cilimb secondary students were not actieving at expected levels: The district was also experiencing a shortage of tēachérs in speciā education and bilingual education: There was; moreover; evidence that some teachers currentiy empioyed did not themselves possess a level of skili sufficient for their teaching assignments. During this and the next school year; ít became ciear to the top administration thát the teacher crísis-the shortage of qualified teachers in critical fields such as science; mathematics; and bilingual education-had become the single; most critical issue facing the district. That perception was clearly stated in a report to the Board of Education:

> What is the teacher crisis? The teacher crisis is a dramatic shortage of teachers in criticai fieids such as mathematics; sciencegand speciai education. It is high teacher turnover in urban schools resulting in detrimental instabijity fn urban classrooms. It is placing before our students; teachers who themselves cannot read, write, and compute in an acceptable menier. It is high absenteeism and low morale. It is a complex conglameration of factors which has resulted in widespread wavering from traditional standards of excellence At a time in the history of civilization when the demand for iearning is greater than evér before; the ability of the pubifc schoois to perform the task has been seriousiy jeopardized.

HOUSTON INDEPENDENT SCHOOL DISTRICT'S RESPONSE TO. THE PROBLEM

The district's responses to the problem, an incentive pay plan and a schooi-based retraining program; have been a dramatic departure from solutions traditionaily espoused in public education. But the approach to introducing these plans followed the pattern set during the last gears by the General Superintendent, Dr. Billy R. Reagan. That approach. is to communicate the scope of the problew in every way possible to ali segments of the community=school staff; parents; business commanty. Staff vacancy reports and student tēst scores were made public in every avałlable forum.

Widespread comunity support was expressed wher the Board of Education ā̄opté the sécond Mile plan; an incentive pay plan for tēachérs, effective in September of 1979. The plan; $\bar{a} \bar{n}$ expres̄ion of determination to attack the teacher crisis $\overline{\mathrm{a} g \mathrm{~g}} \mathrm{r} \overline{\mathrm{e}} \bar{s} \bar{s} i \bar{v} \bar{e} l \bar{y}$, was hammered out without benefít of precedent or example, for while the concept of incentive pay for teachers has long been debāted in education circles; it has never been comprehensively worked out and 1mplemented until now: Ās of Septémber 1982; Houston remains the only major

The Second Milē Plā̄ tā̄gets four specific areas:

```
- improvement of instruction;
- shortage of teachers;
- staff stabilization; and
- recognítion of teaching as a rewarding career.
```

The purpose of the plan is to reward those teachers who go beyond the minimum required to meet the instructional needs of their students, teachers who 80 "The Second Mile." The plan provides financial fncentives over and above their normal salary to teachers who teach in curriculum areāes or campus locations where critical shortages exist.

Teachers must meet cértan minimum requirements to establish eifgibility
 employee must:

- hold an appropriate valid teachiag certificate or perinit;
- be assigned $\overline{\text { to }}$ a school or in̄tructional site; .
- be paid on a teachere sālāry scale;
- have an acceptable performance evaluation;
- hāve limited ābsences (there is curreñly a plan which allows absences to be averaged over à 3-year period; with a 3-year total not to exceèd 15 days; or 5 days per year); and
- be a fulltime teacher; uurae; or-librarian.

Ā employē may qualify for a bonus stipend in each of six categories; Which are obviously consistent with the four main target areas the plan was dēsigned to address:

- Contributing to. Outstanding Educational Progress by Students

Prevíous academic achievement and a numbe: of other factors are used to predíc the expected tē̄̄ score averages for each school campus. If the school's average score exceeds the predicted score; each éígible tēacher receivēs $\overline{\mathrm{a}} \overline{\mathrm{e}}$. $\$ 800$ stipenc "This component is especially attractive to the business community which is accustomed to rewarding demonstrated productivity:

Each year the personnel office determines the Instructional areās which hāve critical staff
 mandate or required for graduation: Since;the inception of the program 4 years ago, stipends have been given to teachers of science and mathematics; bilingual and special education- Currently; high school mathematics and science teachers are eifgible for $\$ 800$ stipends. Stipends for special education téachērs range from $\$ 600$ to $\$ 900$. Bilinguai tēachers may earn an extra- 1,000. it is anticipated that thesee stipende wili be rásed within the current year.

- Teaching in a High Priority Locātion

Teacherrs who remain in schools with high concentrations of educationally disadvantaged students $\bar{a} r \bar{e}$ eligible for $\overline{\mathrm{a}} \$ \mathbf{\$ 2 , 0 0 0}$ stipend.

- Maintaining Outstanding Teacher Attendance

While an attendance factor is included in the eifgibility requirements; special stipends may be paid to teachers who exceed these baseline requirements or are absent 5 or fewer days during the year. The teacher must work in the district the following year to receive the stipend.

- Participating in Professional Growth Activities

Teachers completing college courses in curriculum areas related to their teaching ussignments or in areas of teacher shortage are ellgible for stipends. Those who voluntarily attend distict approved inservice may also apply for professional growth stipends. For each 6-hour block of college coursework or each $\overline{72}$ hours of approved inservice, the stipend is $\$ 300$.

- Unique Campus Assignment

Teachers who teach at a campus for which no tess data are availabie either because the studentes are not àt the school long enough to be tested or because the siudents àre not āblé to be tēsted ūing standardized tests, may receive the unique campus āsisignent ${ }^{i}$ stipend. Teachers receive stipends ranging fromi $\$ 450$ ro \$750. These teachers are not eligible for the outstanding educational progress stipend.

Predictabiy, reactions to the Second Mile Plan have been varied. As noted; the business community has supported both the concept and the expenditure of several million dollars each year to implement the incentive pay plin. The three teacher organizations representirs Houston teachers have opposed the plañ; arguing that funds spent for the plan should be used to provide across-the-board raises or fringe benefits for all teachēre. But more than half of the district's teachers responded to a research department survey that the pian should be continued. Those who recēved stipends rated the plan more favorably than those who did not.

Aftè 3 years of operation, many positive results of the plan are evident. In the four critical areas for which stipends are paid; total beginning of the year vacancies decreased from 195 in 1979 to 30 in 1982. During the years from 1978-79 to 1981-82; total district teacher turnover for all reasons. is reduced by 6.8 percent. Absences of teachers in the critical staff areas were reduced from an average of 10.3 days a year in 1978-79 to 7.1 days in 1980-81. Qver \$17 million in stipends has been paid to teachers during this 3-year period, with many eligible teachers augmenting their salaries by more than $\$ 3,000$ per year. Title I funds are used for the high priority location stipends; all other stipends are paid from iocal funds.

- The district continues to montor the results of the Second Míe plan and to modify the plan to meet changing local needs. There is ample evidence that Einancial rewards to teachers through a carefuliy administered incentive pay plan can help meet one of educatió's major crises:

During the $1981-82$ schooi year, the Houston Independent School District implemented another program-Project Search=-which directly targeted the shortage of mathematics and science teachers. project Search is a iocal school district staff retraining program; operated in conjunction with local unfversities, which identifies and recruits already employed teāchers into training programs leading to certification in mathematics and science. Flementary level teachers with some college credits in mathematics or science and an interest in teaching one of these subjects at the middle/junior high schooi ievel were put into an intensive tuition-paid program this past summer. Likewise; middle/juñor high school-teachers were recruited for training programs leading to certification for high school science or māthematicé.

The district not only paid for college tuition and books; but paid these teachers a $\$ 250$ per course stipend as well. The $\$ 250$ stipend was contingent upon an A or B grade. Teachers in the program signed agreements to remaln in the district for 3 years in mathematics or science positions or else to repay the district the cost of their training.

Over 300 teachers came to an orientātion meeting designed to recruit 50 teachers for retraining as mathematics teachers. Careful screening for good academic records, good evaluations, and good recommendā́ions from principals. followed.

At the end of the first training cycle this summer, 34 teachers were placed in new assignments as mathematics or science teachers. In spite $\overline{\text { of }}$ careful screening, some applicants could not maintain the required all A and B grades and were counseled out of the program. Two participants have moved from the district.

A total of $\$ 68,511$ has been expended in this program to date.

SUMMATION

These are the major actions taken by the Houston Independent schooi District to address the shortage of mathematics and science teachers. A determination to address the whole issue of the image of the teaching profession, the number and quaifty of students being recruited irto the profession, and the quality of the teaching-iearning process permeates the district and is expressed in many ways. Standards for promotion and graduation are being raisḗ; à comprehensive staff assessment and assistancē program is underway; technology is being used to support the ingtructional process and plans are proceeding for the opening of two magnet high schools.

The Houston Independent School Distict will continue to take whatever actions are necessañy to àsurue thàt its students have qualified tepachers in all subject àrēās.

DISCUSSION OF
 SCHOOL SYSTEM RESPONSE TO THE PROBLEM OF TEACHER SHORTAGE IN SCIENCE AND MATHEMATICS

Charles Thomas; Superintendent of Schools; North Chicago Public School-District No. 64

As a practicing superintendent for the last 10 years, I am interested iñ efforts undertaken to solve the problems of the shortase of mathematics and scfence teachers. The presentations we have heard attest to the variety of concerns and the kinds of activities that are being tried.

The Lō Angelē story, in $\overline{\ln } \mathrm{y}$ oplinion; is an eclectic approach to the problem of the shortage of teachers. I applad the wide range of activities and considerations that are involved in the have any major concerns with it. it think that the activities to upgrade; retrain; and credential teachers are extremely important as we deal with the shortage.

I do not feel that the school system had time to consider some of the theoretical concerns of the various activities. This is understandable because the requirement for school systems is not deliberation on theoretical underpinnings of the program approach but immediate movement, action, and responses to educational problems-such as the teacher shortage.

One important thing Los Angeles is doing similiar to my schooi system, is involving the military as weil as industry in their endeavor. North Chicago is unique in that 50 percent of our students are connected to the Great Lakes Naval Training Station. Further, we involve Abbott Laboratories, one of our largest taxpayers. They have donated microcomputers to our school district.
\bar{I} applaud the $\overline{P R} \bar{S}^{2} M$ program for taking the initiative to increase the number of minority students capable of entering schoois of engineering. While some may say focusing in ou minority students might be narrow, I think the curriculum deveiopment outcomes and the other activities improve the mathematics and science curriculum and have systemic values: So in the long run you are improving your educational system at the same time you are creating à climate for succēs amongst minorities.

One of the program's dangers; I would say, could be the development of eiftism among the participating students. But on the other hand, if you are getting increaged student interest in participation, if you are increasing the numbers; which is your objective, then certainiy in this case eifitism is not bad.

I like the idea of the teacher module. Many times when we recruit teachers; if i am recruiting an art teacher; I will ask, "Are you an artist or ait art teacher"" This is a very difficult question for wany applicants to answer. Usually they come back with some kind of response which wili come down the middle, to indicate that they do have the tailent to perform but that they are interested in teaching and their comitment is to teaching.

I think thère is no better way to stimulate young people than to have science teachers, some part of the time; acting as scientists and demonstrating that capability So $\dot{\text { I }}$ ilke the ídea of a "scientist in residence" type of modei which Dougias Seager taiked about. The program in Rochester exemplifies the kind of things many school districts are talking about when they taik about cooperation with industry.
..... Patricia Shell, in Houston you need not apologize for having the money. If you have the money, spend it. You had a teachér problem. Yoū rēponded to the problem. You had the moniēs for prograns so I recommend that you should continue your programs $\bar{a} \bar{s}$ long $\bar{a} \bar{s}$ you're getting results.

Some māy coment, "Well; what about the district's overail teacher force quāity? Are you doing anything on that end of the spectrun?" íneifeve that you are concerned about the quailty of ail teachers. From what I know about Houston and Biliy Reagan; your Superintendent; I'm sure you're attacking that particular probiem; too.

One concern-ít might be beaause I really don't know enough about the program-are you rewarding people beyond the minimum? What about the ordinary teachers? Does it promote in some way a kind of mediocrity? Another concern所ght be: How practical is it nationwide?

I know you àre concerned about Houston; but if have a concern about the problem in general; as I'm sure you do; too; so the practicality of it might be a concern. Again, if you have the money and you are in a position to spend it, the outcomes-while we may cavil from a moralistic point of view-indicate that i't works.

E.B. Howerton, Jr., Āsociāte Superintendent for Personnel and Administrātive Field Services; Department of Education; Commonwealth of Virginia

I'm going to take the liberty of jumping to the end of my remarks. Frānkly, I think Dr. Thomas expressed it very weil. We had an opportunity to confer just long snough to decide that we were in total agreement. There is absolutely no question whatsoever that the rhree plans presented are workable. They are plans which thefe should be no apologies for whatsoever. They are programs that we have had the opportunity in our own Commonwealth to review, to considḗ, to implement to a certain extent.

Very quickly, Virginia happens to be a State in which $\overline{3} \overline{8}$ percent of ail of the school divisions indicated this past school year that they had extreme difficulty in securing mathematics and science teachers. As a matter of fact, 42 percent of the division superintendents responded that they were unable to secure credentialed personsvin the area of physics. Among our public colleges and universitiss, which number 36 in Virginia, we had only nine graduates in the area of physic \bar{s}, añ only two of those pursued a career in teaching: í - don't think these statistics are unlike those which are found in many other states.

Let me share for a couple of minutes some of the cautions that 1 think can be extracted from the three projects, and these relate more to the level of affinity which I have than to any position of opposition.

One; I think the question of salary differentiation is one which should be looked upon very carefully. I am still concerned about the English teacher who spends many, many hours at home in the evening grading papers and happens to be next door to a mathematics or science teacher who would not necessarily have that same task yet would be compensated differently.

I think we have to be careful in making an assumption that to retrain anyone necessitates that they take everytr ng that one would have taken just as if they were beginning their training from the outset. Corollary to that is the doubt that one can be retrained by simply picking up where they happen to have left off many, many years earlier. I don't think we have found; from the very ilmited studies which have been made of retrainiug efforts; that one retains all of that which ove learned many years earlier.

The issue cieariy is multipíé by two other factors, namely, that mañ States (37 States) are considering increasing the requirements for graduation from high school by one unit in mathematics, one in science: And the statisties were provided here todāy that that would increase the number of required sections of both mathematics and science by anywhere from 15 to 25 percent, depending on the State in which you happen tọ reside.

Pat; one aspect of your program that I had the opportunity to review is that of performance $\bar{a} \bar{s}$ a factor related to paý. I think performance is clearly a factor, but I would caution anyone againgt using performance as the single criterion; or actūal clas̄room teaching performance as the single criterion; upon which an incentive would be afforded.

SESSION VII
 PUBLIC AND PRIVATE SECTOR RESPONSE TO THE PROBLEM OF TEACHER SHORTAGE IN SCIENCE AND MATHEMATICS

3
ARGONNE SUPPORTS PRECOLLEGE EDUCATION
IN SCIENCE AND MATHEMATICS
Juanita R. Bronaugh, Director of Affirmative Action Program, Argonne National Laboratory

Abstract

Argonne National Laboratory was originally created to perform nuclear reactor-related research. In recent years the laboratory's efforts have expanded to émbrace studies of many other energy technologiē. The laboratory takes pride in the fact that over half of itē employeēs, 1,800 , àre scientists. and engineers who hold advanced degrees and many of wholl hold joint appointments with the University of Chicago. Interaction between the laboratory. and the university community has existed for a long time.

However, Argonne faced with the fact that, like other research and development facilities, it must compete for well trained scientiats and engineers in a highly competitive national labor market. Because émphasis on solving problems of decreasing industrial productivity, environmental stress, and shifts in the economy are bringing the demand for techaical people to crisis proportions, innovative ways had to be found to increase opportunities and to effectively utilize highiy trained manpower.

As a member of the reāārch comunity thāt hā̄ traditionally looked for permanent employees from the pool of postdoctoral students, it was in Argonne's self-intérēst to help improve the quality of precoliege education. Therēforé, the lāborātory' \bar{s} Division of Educational Programs has developed sēēeral formal precollege activities designed to bring about participation on the part of teachers and students in research programs:

Although there was acceptance of the fact that the Nation' \bar{s} actence and mathematics education was in a pernicious state, the precollege thrūt was not readjly accepted at Argonne because of several widely held mythr. Among the myths were: the goals of the laboratory and the public schools are not compatiblé; certain segments of the society are incapable of understanding the concepts and participating in the flelds of science and engineering; and professional scientigts and engineers would not be wilitng to associate with public school students andor teachers.

You wili note that as I outline Argonne's involvement in precollege programs that these myths have all been dispelled and that some of the strategiè èmpioyed are modeled aftē othèr longatanding precollege programs 1ike PRIS2M in Rochēstér; Nè̀ York and the Saturday Science Academy in Atlantā, Georgià.

The objectives of our programs are twofold: (i) to prepare a future generation of researchers; and (2) to increase the scientific literacy of the populace as a whole.

Presentiy, Argonne National Laboratory sponsors and participates in programs aimed at assisting precollege students. These programs are described below.

I. High School Summer Research Apprenticeship Program (HSSRAP)

The High School Summer Research Apprenticeship Program is designed to encourage ominority and female sophomores to continue their high school studes in science and mathematics during their junior and senior years. The students participate in a 6-week program which offers exposure to a broad spectrum of energy-related research programs at Argonne and to Aroonie's scientific and engineering staff. The progłam also enhances the students educational experience by providin̄ supplemental work in mathematics; science; and communication skills:

An appifcant for the program must be in the upper 20 percent of histher class aind have completed 2 years of mathematics (through geometry), 1 year of biology, and 1 year of chemistry. Applications for participation are only accepted from those students attending schools in the Greater Chicago Areá. Although all the students aceepted in the program mast have met the required criteria; there is a lack of uniformity in the kind of mathematics; biology; and chemistry courses the students have completed. Therefore; it is néessary to begin the program with structured ckasses to ensure that all participants begin with à common knowledge base.

During the 6-week program; emphasis-is on smail group research projects; instruction in computer science; elements of nuclear physics, crystaliography, environmentai chemistry, and scanning electron míroacopy. Lectures and iaboratory experimentes are conducted by añ Argoñe scientist or ēngłneer.

Thère are other programs aimed at increasing the number of minoritied añ females entering science añ engineering in the Chicago area. Būt until the itmplementation of Argonne's sophomore program; there was no vehicle for. taiented tenth-grade students. Programs such as Early Identification and Inroads at ininnois Institute of Technology focus on identifging the academically talented student in thé junior year of high school now students who participate in Argonne's summer program feed into the iTT Programs during thèir junior year of high schooi: After graduation; some of these students réturr to Argonne to participate in the Precollege Program in Science and Engineering (PRE-COOP).

í: Precollege Program in Science gnd Engineering (PRE-COOR)

This prograw was designed to provide college bound students an opportuity to work with professional scientists and engineers and to encourāe the student to persevere in his/her studies in-science, engineerings, and mathematics at college. The competition for this program is very keen. Oniy one of four applicants is admitted to the program.

Fmphasis in this program is on research. Each student becomes a part of an established Ágonne research team and either pursues some aspect of the
ongoing research independentiy, or assists with the efforts of the group. Each student is expected to prepare a written cogent summary of his/her rēseärch project.
III. Adopt-A-School

The laboratory also participates in the Chicago public Schools' Adopt-A-School Program. This program was fnitiated by Ruth Love; Superintendent of the Chicago Pubilc Schoois; In an attempt to improve the Chicago schoois with resources that are otherwise unavailable to the schools.

Through the program the lāboratory provides technícians to repair equipment; scientistes to give lectures and eeminars; institutes for teachers; and tours of the research facilities.

One of the precollege programes Argonne is participating in wās the dirēt result of an économic concērn for the city of Chicago.

In 1981; Jane M. Byrne; the Mayor of Chicago; asked Waiter E. Massey, Directior of Argonne National Laboratory; to chair a Task Force on High Technology Development. The primary objective of the Task Force was to foster the development of new sctence-based business in the city and improve the local economy by providing new jobs and opportunities for its citizens. The Task Force, analyzed precollege education in the Chicago area; and recomended that private industries and universities in the area work with the Board of Education to help improve the quality of science and mathematics at the precollege level. The Task Force report (1982) states:

When considering the location of business In Chicago; it must be recognized that some areas of the city are

E
perceived as unattractive with respect to quality of iife; amentites; and services. One particular concern is the quality of precollege education offered in certain areas of the city: Good schools do exist and the quality of Chicago's schools appears comparable to those of other

- major urban areas; however; the perception of, along with the quality of pubic education, needs to be improved. It is recognized that this is a national problem as well as a regional one.

In response to the recomendations made by the Task Force; Mr. Richard Mörrow, President of Standard 0 ± 1 Company of Indiana, convened a meeting of representatives from high technological industries, universities, and research facilities in the Chicago area to discuss joint efforts with the Chícago pubiĺc School System that might demonstrate how the educational sȳ̄tem in the Greater Chicago Area might be capable of producing the quantity and quality of skilled personnē required by new high-tēchnology industries..

IV. Chicāgo Arēa Prēcollege Engineering Program (CAPCEP)

As a result of this meeting; the Chícago Area Precollege Engineering Program (CAPCEP) was estabíshed. CAPCEP is a partnership invoiving. industries which employ engineers, scientists, and other technical personnel,
pubilc and private èlementary and secondary schools̄, and collēgēs. CAPCEP'se byiaws state the purpose of the partnership is "...to ficreage the number of minorities in sciencè and engineering careers by providing technical; financiala, and àdininistrative assistance to Chicago area...aschool systems in order to enich the academic curricuium and develop student interest in these careers:"

The program concepts are to be initiāted in three phāes.
Phase I, CAPCEP activities in this phase focus on planning; initiation, and évaluãtion. Six Chicago public elementary schools which reflect the racial; economic; and social characteristics of the school system as a whole have been Identified to participate in the ptlot program: Elements of the pilot program consist of identiftcation of needs; program development, inservice training, instructional assistance, and curriculum development.

Presently, the results of a questionnaire completed by 700 elementary school teachers are being talifed and anaiyzed. The information gathered from this needs assessment will be used to develop the inservice training and other program elementē désignated for phase i.

Phase II. During this phase CAPCEP's activitues wili be expanded to include the high schools serving the feeder elementary schools participating in Phase i. A gequential program plan will be developed for the participating high schools. Additional elements such as à peer supporit system, tutoring, careeer information, and $\overline{\text { recogntiton activities will be included as an integral part in this }}$ phase of the program.

Phāse III. The program wili be expanded to include all remaining elementary and secondary high schools in the Chicago area during Phase III:

CAPCEP is unique. Unlike other existing precollege programs in the Chicago area, CAPCEP operates within the structure of the schools, with most of the program's activities occurring during regular school hours.

In addition to the precpliege programs already mentioned, Argonne is exploring other efforts which will assist in increasing the pool of students pursuing sctence and engineering degrees. Many of these efforts are yet iñ. the embryonic stage.

Two of these programs are: TSIM and saturday Science Academy.
V. Tomorrows Scientists, Technicians, ánd Managers Program (TSIM)

We are presentiy reviewing a proposal for precoilege involvement with the Aurora public School Sȳtem. The program; Tomorrows Scientists, Technicians, and Mañers Program (TSTM), is specifically designed to increase the number of finorities entéring the scientific; technical, andor business
 within the schools. TSTM will focus on selected minority students in grades 9 through 12 and conduct its activities outside the school structure

VI. Sātürday Science Academy

We at Argonne are excítē āout another program that will be implemented in May ōf this year. The Sāurday Science Academy is modè $\overline{\text { éd }}$ after the Science Academy implemented by the Atlanta Resource Center for Science and Engineering: Whereas Atlanta's program is an academic eñichment program fō elementary and middle school students in grades 3 through 8 , Argonne's program is designed to focus its éforts on highiy talented students in the 4 th grade.

We are attempting to plant the sciencelmathematics germ in kids at a very early age; hoping that with proper encouragement and development some of these students wili becone the scientists of tomorrow.

Our initial efforts wili be a pllot program for 15 participants for a 6-week period Because we aze scientists and engineers̄=rēēarchērs, not éducators-we sought and obtained the services of curriculum specialists from sur rounding colleges and universitiēs to āsis̄t ū in this programo Staff scientists and engineers hāve submitted suggestions and volunteered to give lectures andor demonstrations. A comprehensive evaluation is planned before the program is exparided.

Thēē \bar{a} are programs that we are very excited about:
In our eagerness to respond to the numerous requests for assistance from the Chicago area schools; our approach to precollege science and mathematics education has been an éciectic one. We are now raising the questions: is more better? should we respond to all requests for assistance? Are the students deriving benefits from our programs? Are we utilizing our resources effectively?

The precollege activities are now being evaluated to determine the impact of the programs on students and Argonne personnel. Because we are determined to offer quality programs; we will undoubtedly narrow our focus; concentrating on those things that we believe we can do best. Whatever direction our precollege involvement takes us in the future, it will be one that demonstrates Argonne's continued commtment to precollege education in science and mathematics:-

Walter E. Massey (1982), Director of Argonne, sets the stage for our commitment when he declares:

It is in our self-interest as members of the research community to make sure that we replenish scientific and technical talent for future generations, and it is in our self-interest that the populace as \bar{a} whole become .- scientifícaliy and technically litérate.

references

Massey; W.E. Science Education: Role of the National Laboratories; address to Ágonne employees; July 1982.. .

TASR FORCE ON HIGH TECHNOLOGY DEVELOPMENT - CITY OF CHICAGO, October 1982; 17.

SCIENCE MUSEUMS AND SCIENCE EDUCATION

Bonnie Van Dorn; Executive Director; Association of Science-Technology Centers

To complement science education in schools, science museums offer programs $\bar{a} \bar{t}$ the cutting edge of science education activitiē in the United Stāē and the world. For examplé there are mobile computer van programs, seiencé camps; programs for handicapped youngsters, teacher inservice training; and the use of participatory exhibits. This paper describes many of the excellent programe offered by the approximately 100 museums iñ the United States belonging to the Association of Science-Technology Centers.

The variety of science museum programs is striking and addresses the needs of diverse audtences. The programs are designed for many age sroups; ability groups; interest ievels; and educational levels from preschool through higher education. The types of programs are equally diverse, ranging from the very informal exploration of exhibits in mueums to formal classroom situations where graduate credit may be offered. A comon characteristic of museum education programs is the involvement of other education agencies; private and public organizations, and the media. These collaborative efforts of ten have a long history preceding the current emphasis on encouraging partnerships among schools, government; and the private sector:

Encouraged by the pubifc enthusiasm for science museums; many communities within the United States as well as other countries are planning or have recentiy estabifshed new science.centers or a new educational emphasis for existing museums. These contemporary science museums are dedicated to improving the pubiic understanding of science and technology. Thēy provide a science education resource that is significant and not yet ūed to its full potential. Expansion of exemplary museum programs is possible through the creation of more incentives for schools and museums to work cooperativeiy; the establishment of ongoing funding support; and the formation of a body of resēarch concerning education in museum gettings:

Although we generally think of schools when we talk of science educationg a growing amount of learning about science and technology is happening in informal settings outside the classroom. Widely available computer technology has made teenagers unchallenged experts at video games and whizzes on home computers: There are dozens of popular science publications; spanning a wide range of sophistication, from Scientific American and Science 83 to Popular Science and OMNI. Although "NOVA" remains the only regular TV series dericated to explaining science, other programs like "The Body Humang" "National Geographic," "Life on Earth; "Cosmos, "and "Discover" regularly attract viewing audiences of 5 to 20 milíon (Tressé, ig82).

Science museums alse attract huge audiences. Representing ọny lo percent of the museumis in the Nation, according to a 1974 National Eñownent for the Arts Survey, they attract 38 percent of the museum-going audience (NRCA; 1974). $\bar{A} 1979$ survey by the Institute of Museum Sérvices reveals that science museums
comprise 18 percent of the museums in the Nation and attract 45 percent of the museum-going audience (NCES; 1980). If zo0s; planetariums; aquariums; arboretums, and nature centeris are included, the tôtal annual attendance is 150 million and equal to the combined annual attendance of professional baseball, football, and basketball games (Tressel, 1982): The Nationai Air and Space Museum has an annual attendance of 10 milifon, approximately the same as Disney Worid and more than ail the other museums of the Smithsonian combined (Tressèi, 1980).

In recognition of the popularity of these alternatives that make science fun as well as educational, the National Science Board Commision on Precollege Education in Mathematics; Science, and Technoiogy states in ites preifminary report that ".o.there is evidence that many students who have an interest in mathematics; science, and technology are not being reached through instructional approaches currently used in the clāssroom. Whereas many \bar{s} tudents do not like school science-mand forim this opinion by the end of thitd grade--many do likè thē sciencè and téchnology they see on televtsion: They $\bar{a} \bar{a} o$ like what they encounter at science and technology museums; pianetariums; nāture centers, and national parks" (CPE; 1982; p:7). The Commission advocates examining the innovative instructional approaches used at such ingetitutions and, where appropriate; applying them to the classroom.

Many schools are capitalizing on the opportunity to "extend their walls" by working in concert with sciencesmuseums. Traditionally systematic collection activities and related research have been the priorities of science museums. Todā̀ their role increasingly emphasizes inforwal education programs. Many contemporary science museums known as science centers have no colilections at all in the traditional sense; but still value the use of objects to convey sctentific knowledge and processes in a hands-on way.

The Association of Science-Technology Centers (ASTC) is a private nomprofit organization founded to represent science museums ' common interests and to provide information and gervices to jmprove museum operation. Today the Association has 150 riembers; approximately 100 of which are science museums in the Bnited States. ASTC provides a commuication network through its conferences, workēhops, nēwēetters, and other publications; a traveíng exhibition sérvice which manages a tour of temporary exhibits to ābout 50 different museums per year; and training opportunities for museum professionais. The Association is funded by mémber dues; fees for servicēs; special project grants, and cō̃porate donations.

ASTC's members àre vèry diversee, from the huge Chicago Museum of Sctence and Industry, with ite 14 acres of floor space; to the tiny Museum of Heaith, Science, and Industry in Cinctanati, which has 2 staff members and is housed in the former women's iounge of the Union Terminai train station. Galf the members have annual' budgets under one-haif million dollārs, and half were founded in the last 20 years: All are nonprofit and provide extensive education services to the public; including extibitions; films; planetarium $\bar{s} h o w s$; classes for $\bar{a} 11 \bar{a} \bar{g} \overline{e s}^{\prime}$, trips and tours; lectures; and spectal events. ASTC education programs include the following:

- 93 percent of science centers work directly with the local schools to provide educational servicés;
- $\overline{89}$ percent provide programs especiaily for teachers;
- . 75 percent have outreach services that bring programs into the schools;
- 33 percent cooperate with universities to offer training for degree programs (such as graduate level teacher inservice training):

The following are examples of the education programs that science centers $\bar{p} \bar{r} \hat{v i d e}$. They offer an update to the old stereotype of docents leading hoards of students on tours of halls past glass cases of musty exhibits. Thēe programs are successful in their own communities and have potential for expangion and réplication elsēwhere.

Computer Programs
With tie current hunger for computer iiteracy and the ifmited access to computer instruction in schools; science museums are experiencing a high demand for computer ćlasses. Most science museums have foliowed the modé of the 亡awrence Hail of Science in Bēkeley, offering ifteracy ciasses for ail ages as weil as opportunities for individuals to rent time on microcomputers: Whole school çiasses can register. for lessons taught by museum staff in lābs equipped with 15 or more computers.

A good example of the science museum community's response to this public demand is the Chicago Museum of Science and Industry's program. Their spring 1983 program cátālō fēatūē̄ 36 diffē̃̄̃t; 5-session compúter classes for anyone 10 j ars or older.

Several years ago; the Oregon Museum of Science and Industry In Portiand initiated a computer ciub for gifted high school students. Working with an advisor; , the students produced programs of commercial value for the local community. The museum's more recent efforts emphasize younger children's. introduction to computers through classeg for grades 1-3, using the Turtle graphics of LOGO and PILOT.

Last summer, Pacific Science Center in Seattle worked in cooperation with a local private school; which provided the facility, and several computer manufacturers; who supplied equipment; to offer a computer camp so popuiar that extra sessions had to be arranged: For a tuition fee of \$175; students spent a week becoming familiar with computers and learning to use them as tools to anaiyze marine science data they coilected at Puget Sound beaches.

In order to make their programs accessible to additional audiences, museums in San Francisco; Portland, and Seattle operate computer vans, and The Space Center at Alamagordo; New Mexico, plans to circulate one later this yearThe Seattle computer van program has been selected for the National science Teachers Association's top award this year in the "innovation in Eiementary and Secondary Science Teaching" category, The van brings 2 ingtructors, 15 Apple computers, and a variety of daylong iesson plans to public and private schools. Funding is provided by user fees and grants from foundations and
corporations. Portland supplements their van outreach program with a Rent-an Computer-Person service for groups needing an instructor versed in BASİC and PIIOT.

Several centers offer workshops for teachers and administrators to provide basic computér literacy $\bar{a} \bar{s}$ well $\bar{a} \bar{s}$ to acqualat them with ways they can use computers to tēach science and mathematics. Teachers need to learn how to select and evaluate software and courseware; how to manage ciassroom logistics when one microprocessor must serve many students; and how to use the computer to hè \bar{p} with theit own student assessment and clerical tāks. Pacific Science Center has provided this service under contract to the Washington state Superintendent of Public Ingtruction and for ualversity credito other museums mā̆ offer their teacher classes independently or in conjunction with local districts. Chicago furnishes a choice of five different brands of microcomputers for their training progiams. This gives educators the opportunity to compare hardware and software in a non-sales atmosphere in order tō make more informed decisions about district purchāses.

Teàchèr Servicess

An increasing number of science centers have established links with local university colleges of education to offer teacher ingervice training. A comon course offering is. "How to Use the Museum in Your Curriculum" or "Using Science Resources in the Communty' as well as many other special science topics iñ environmental education, astronomy, biology, social science, and energy education. Frequently offered for graduate credit; these courses not only use the special resources of the museum and its staff; but also often motivate an interest in science among teachers who avoided science during their previous schooling.

Teachers can obtain a more intensive science experience à the Discovery Place iñ Charlotte, N.C., the Pacific Science Center iñ Seattie; WA.; and the Oregon Museum of Science and Industry: Elementary school educators teach and learn at the science center to improve their own science teaching quality and develop leadership skilis to conduct inservice training for their colleagues when they return to their districts. This experience earns teachers credit towards a master's derree at several universities.

As well; musum educators recognize the important role that classroom teachers play in assuring that students make the most effective use of the museum. Teachers are encouraged to become acquaiñed with the museum through: free admission íncentives; educator open houses, introductory inateriais; and pre-visit workshops.

Equally $\bar{a} \bar{s}$ important as the museum visit are the followup activities. The Franklin Institute Science Museum in Philadelphia has developed the Science Enifchent Service; which aie kits that teachers can take home to continue investigation of a scientific topic their classes studied at the museum- Each kit contains a poster; activity sheets, and a detailed teachers guide for further exploration. Other museums distribute children's pubícations, ioan kits; and provide activity packets for additionai followup.

Curriculum Development

The Lawrence Hail of Science, part of the University of Caiffornia at Berkeley, is a national leader in the development of science curricula. Examples of theír pubilshed curriculum projectes availabie for school adoption include: Science Activities for the Visually Impaired (SAVI); Science Curriculum Improvement Studies (SCIS); Outdoor Biology Instructional Strategles (OBIS); Health Activities Project (HAP); and otherss. All àre highly motivational, involving students in the science experimental processes. In addition to curriculums, museum educators have developed computer software and courseware for classroom use, especially at the junior high level.

Science Accessibility for Spectal Groups

Bringing science experiences to disadvantaged students, those with handicaps, or women and mino $\bar{n} i t i e \bar{s}$ is a priority of science museums. The Mathematics and Engineering Science Achievement (MESSA) program at the Lawrence Hali óf Science provides encouragement for minority students to pursue science careers. In a similar way, the workshops and curiculum materiales of the Hall's EQUALS program give wowen students carreer guidance and incentive to elect mathematics classēs in junior and senior high. These model programs have been émulāted in other cities. Lawrence Hail aiso runs very successfui Math for Girls classes in their weekend and sumer enrichwent program.

The Exploratorium in San Francisco offered workshops for parents, teachers; and administrators of disabied children. Workshop participants used the exhibits to experience the audítory, tactile, and vestibular' perception probiems often encountered by children with learning disabilities. This heiped the participants better understand the problems faced by the children and taught them how to use Exploratorium exhibits éffectively with them:

Pacific Science . Center developed a curriculum guide and kites for ioan to teach marine science to visually impaired children. The activities are appropriate for use by all children in mainstreamed élementary ciassrooms.

Programs for the Gifted

Many science museums offer special programe for gifted and talented youngsters. Two exemplary programs are conducted in Atlanta and Baltimore: The Fernbank Science Center in Atlanta (part of the Dekalb County School District) holds a block of intensive science courses for able high school students. Bused to the science center dally for the whole term; the students hàve àcē̄ss to the èlectron microscope, telescope, nature center, and other special equipment facilities and expert staff at Fernbank.

The Maryland Science Center in Baitimore employs over 100-part-time Instructors; many of whom are Johns Hopkins University professors; to provide science ciasses for academically gifted students who need enrichment and accelerated learning. Students are selected by IQ test scores, academic achievement; and recommendation to participate in these college level Student Science Seminars. The program is funded mainly by course fees.

Outreach Programs

Since science museums are often located in urban centers, many programs emphasize exporting the museum staff and resources to more distant communities. Besides ccmputer vans; several museums have teams of teachers, small exhibits, and "hands-on" lessons that travel in vans to schools for daylons programs. Others; including the North Carolina Museum of Life and Science in Durham; provide instructors and classroom-sized inflatable planetariums for conducting astronomy lessons that teach youngsters to use starcharts and to do their own evening observation activities. Available for travel from the Portland museum are "Tooth or Consequences;" developed under the auspices of the oregon Dental Association, "Clang, Bang, Toot-The Physics of Sound," "The Body Human," and other demonstrations geared tō primary age children.

The Frankinn Institute in Philadelphia is well known for its fine "Traveling Science Show" demonstrātions on simple machines; chemistry; physics, and energy, which aree conducted in schools by Institute staff. With the support of a NSF grant; the FrankiIn Institute aiso estabished exhibites and demonstrations in a local shopping mali. Their walk-through exhibit on mirrors and optics has been borrowed by the Sclence Museum of Virginia for display in the Richmond area shopping centers.

The Center of Science and Industry in Columbus; Ohio; uses students to spread science activities to the schools. Funded by the general Electric Foundation, the Young Experimental Scientists Program brings groups of five elementary students and their teachers to the museum for \bar{a} day of experiments and learning and then provides materials for the students to repeat the activities with their classmates at school.

A group of dedicated volunteers and a grant from à Pittsburgh area printing company makes possible a children's hospital program conducted by the Cariegie Museum of Natural History. Volunteers visit the hospital weekiy, conducting activities about dinosaurs. The program helps to aileviate some of the children's fear about a strange environment and the trauma of a stay in the hospital.

The Ontario Science Centre in Toronto sponsors a Science Circus which travels to remote communtites in the province for 2 week $\bar{s} t \bar{a} \bar{y} \bar{s}$. Their huge tractor-trailer transports 3,000 square feet of exhibits; a theater; and materisis for workshops and demonstrations:

Specíà Programs and Eventes

Sciencē museum personnel are expert at devising creative programes to encourage learning about science and by necessity are also experienced at garuering the publicity; volunteer help; and financial support to sustain them: To follow are a few examples.

Séattie's banana 500 and Boston's egg race are contests which encourage participants to propel vehicles carrying the "cargo" by using a rabber band or a mousetrap. These contests are generousiy supported by the media and provide good comimity visibility for science and recognition for inventive achiē | ement. |
| :---: |

The Camp-In at the Center of Science and Industry in Columbis; Ohio, provides an overnight camp experience at the museum for 35,000 youngstérs and theire scout or youth group leadérs annuālly. Rides participate in science activities that they tāke home on topicses such ās cockroaches, crystals; and mathematics puzzies.

The Oregon Museum of Science and Industry maintains several resident summer camps; of which the best known is Camp Hancock in central Oregon. There campers use iocal study sités tō explore geology, paleontology, botany, ecology; and, astronomy.

The American Association for the Advancement of Science and ASTC are working gogether to identify and placee in the community scientists who are willing to volunteer at sciencē museums. In Durham, N.C., this program has resulted in the science center coordinating the placement of "visiting scientistē" in élementāry classrooms. The scientists receive some guidance concerning the abilities and learning styles of the kids as well as suggestions for activities in their fields that would appeal to the youngsiters. The teacher and students get to relate to "real" scientists; dispeling some of the pervasive and erroneous stereotypes.

In Chicago and other cities; the local public TV station and the museum cooperated to offer teacher workshops on the topics covered in the following week's "3-2-1 Contact" program. Exhibits and programs at the museum were also coordinated with the weekly themes. Museum staff developed student activity sheets to focus a museum visit on topics from the program series.

These museum programs and many others not mentioned hold great potential for hēping to address our current science and mathematics education problems. The following are characteristics of science museums that make them deserving of the funding and research support necessary to meet this potential:

1. Museums provide unique exhibits; facilities, new technology, scientists, and educators not available in the schools.
2. The informal nature of the nuseum environment allows iearning opportunities that complement the classroom. Frank oppenheimer, Director of, the Exploratorium, explained, "No one ever flunks a museum.....In contrast to ćlassrooms, miseums provide a reversible, deflectable, 3-dimensionai form of education" (Oppenheimer, 1979, $\overline{p p} . \overline{8}-9$). in his opinion, museums are voluntary, entertaining, and necessary artificial environments - for learning.
3. The museum's general focus on public understanding and appreciation of sciencē and téchnology seeks to create a level of science 11 téracy and enthusiasm In the community in which school science progrām initiatives can flourish. For instance, fāmiliés thāt attend science museums start their preschoolers eariy with activities to enhance their chindren's interest in science.

4. Science museums have a heritage of working with schools; businesses; comunity groups; and governmental agencies in the collaborative manner dictated by today's ecunomy. They are experienced at attracting volunteer help and media support:
5. Major museum exhibit programs are cost-effective. The National Science Foundation discovered that the costs and potentiai audience of successful science exhibits are directiy comparable to the costs and impact of a public television program-usually pennies per person (NSF, 1983). Programs such as the Association of Science-Technology Centers' traveling exhibition service enable costly exhibits built by one museum to tour museums in several cities, increasing the potential audience more than tenfold. The Exploratorium pubifshes-an exhibit "cookbook" thá many museums use to build their own exhibits without costly development and design outlays.

In recent years the value of science museums as an adjunct to formal education and a cataiyst for scientific and technóogicai achievement has been recognized by leaders of wany comunities here and abroad. In the Ǘnted States there are numerous smail science centefrs being established; many by Junior League volunteer̄; parents; and educators. New sciencé centérs are starting in Canada, France; West Germany; China, Japañ, the Philippinea; Māā̄̄iā; Indonesià, Aūstraliā, Indiā; Saudi Arabia; Nigeria; Israé; and in . other nations striving for technological improvement- To accommodate thia growing trend; ASTC recently created a new category of membership for developing museums not yet open to the pubilc.

These fledgling science centers and the ones that currently exist will have a much greater impact on improvigg science education if several chāllengē are addressed:

1: Partnerships-More incentives are needed to get schools and museums working together enthusiasticaily and for mutual benefit. Establishing successful partnerships requires a substantial investment of time and resources initially to identify the participants; commuicate needs, inventory -esources, set goals; and arrive at a firm comitment. This process does not happen magicaliy and may take considerable effort and funding even before the actual cooperative project is
 schools and museums through participation in eāch otheris curriculum and education advisory comitcees; at board meetings; and through Pareñt-Teacher Asaociations; and other professional meetings: In adition to their boards of directors; some science museums have education advisory comittees to suggest the museum ${ }^{\prime}$ program priorities in relation to the commuity needs: School administrators and teachers serve on these committees; assuring good school-museum cooperation. Likewise; museum personnel shoūld support school district planning activities:
2. Funding-Most science museums struggle constantly for support, reiying largely on earned income; business and individual donations, and, to a much lésser degreé, on Fedēral grānts and municipal support. With the exception of the modest funding
 Science Foundation and other agencies has been for spectfic projects of limited duration. Support for developing innovative programs is vital, but it does not encourage sustained program efforts and may even exacerbate the museum's basic need for operational funds. How do we assure museums' basic support leve so that museums, can afford time to fundraise for new programs?
3. Research-The body of research that exists in other areas, such as education; can contribute to what is know about the effects of science education gained in the museum setting; but this must be done very carefully and systematically. Research models developed for the school setting may not be suitable for science museum activities: The informait nature and novelty of the museum environment and the short duration of contact many visitors have with museums must be considered. More research is needed specifically about museum practices and about the long and short term effects of science museums both cognitively and affectively. Do museum field trips make a difference in classroom learning and behavior? Are there more gains for one type of learner or teacher than another? How effectively do exhibits communcate their messages? What kinds of program designs work best with family groups or very young children?

It would be a tragic waste not to overcome these burdies and fuily tap the special resources of science museums to help address this Nation's complex science education crisis. Joei Bloom, Director of the Franklin Institute, reminded us at the Nationai Academy of Sciences Convocation lāat May that "science museums present information...They excite peoplé... Museums lét peoplé iearn in their own way, at their own pace, àt their own schedule" (Bloom; 1982):-

Bioom; J. Science and mathematics in the schools: Report of a convocation, Washington; D.C.: National Academy of Science, 1982.

Comission on Precol̄lege Educationin Mathematics (CPE). Science and Technology. Today's problems Eomorrow's crises, Washington, D.C.: National Science Board; 1982.

Nationai Research Center of the Arts (NRCA), Inc.; Museums USA, Wā̄ington, D.C.: National Endowment for the Arts, 1974.

Nationā Center for Educational Statistics; 1979 Museum Universe Survey Washington; D.C.: Institute of Museum fervices; 1980.

Pubíic Undērstanding of Science; Summary of rrants and activitiē 1976-1981, Washington; D.C.: National Science Foundation, 1983.

Oppenheimer, \bar{F}, Schools are not for sightseeing: In k.J. Goldman (Ed.) Opportunities for extending museum contributions to precoliege science education: Washington; Dé:: Smithsonian Institution; 1970.

Tressét; Gō. The role of museums in science education; Science Education; 1980; 64; 258.

Tressel; G.W. The price of the pubile misunderstanding of science; Unpüblished manuscript; 1982:
$\overline{3}$

Roy Forbes; Associate Executive Director; Education Commission of the States

The Problem

Providing high quality mathematics and science instruction constitutes a serious challenge to our Nation's educational success. This is particularly significant at a time when it is essentiat to train our future workers for increasingly technical and skilied jobs and to ralse the general scientific and mathematical. Iiteracy levels of our country's future citizens: Our technological edge is threatened by a shortage of skilled engineers and scientists. Technōlogical litéracy is āāo becoming increasingiy important for full participation in our society and for individual personal development. Literacy in a technologically-oriented society will depend upon knowledge of the basic concepts of manematics and science and an understanding and demonstration of their applications:

Not only are éxperienced mathematics and science teachers leaving the profession for more lucrative jobs in business and industry; but the number of entrants into mathematics, and science teaching has decifned over the past ten years:. Many states are experiencing teacher shortages in mathematics and sciencē and, as a result, uncertifted or temporarily certified teachers are sometimes filifng the gap. This solution may appear pragmatic in the short-run, but it is detrimental to rāesing the quality of instruction in these highiy demanded areas.

Nātonal Task Force on Education for Economic Growth

In response to the severity of the mathematics and science education dilemmas facing our country, including teacher shortages as well as other areas, Governor James B: Hunt; Jro; of North Carolina; Chainman of the Education Comimsion of the States (ECS), established an ECS Task Force on Education for Economic Growth.

Forty national leaders compose the Task Force, including governors, legislators; heads of major corporations, education officials, and representatives from labor and the scientific commuity. Additional representatives from each of these sectors provic̄e å network of knowledgeable advisors to the Task Force.

The Task Force is action orfented, drawing heavily on relevant data and resources that already exist. It̄ focus la targeted on strategies to improve the quality of high school education, especially the skills required for economic growth. The Task Force gives momentum to the growing interest and concern among governors and corporāte leaders for the quality of our public schools.

Specifically, the goals. of the Tāk Force are to:

1. Create national understanding of the need for a better educated work force thit 18 necessary for economic growth:
2. Report on how well current education programs are preparing youth for future jobs.
3. Identify alternative policies; programs; and actions to improve education which may be used by national; State; and local ieaders in both the public and private sectors.
4. Promote partnerships among commity; business, labor; government, and education leaders to improve education leading to economic growth.

Although its focus is on education for economí growth, the task Force remains cognizant of ōther equaliy inportañ purposes of pubilc education,

Survey of Stāte Initiātives in Education

The initial activity of the Task Force was directed toward governors as the offictals responsible for guiding State leadership: A State survey developed by ECS staff requested all governors to report the programs and activities underway in their States that address education problems and opportunities.

The governors were asked to provide information on activities concerned with:

- improving student competencies in mathematics; sciencé; computers; and ōther academic areā;
- ūiag computers to improve education;
- providing incentives to attract; retaing and upgrade education personnel; particulariy in science and mathematics; and
- involving citizens and business and industry leaders in education.

Almost 40 states have responded to the survey to date. Although each State reported a unique sē of initiatives for each problem area, most of the responses fit into one of three categories.

- Tāk forces to study the issues; define the probiems; ueeds; and opportunities; and recommend new poilcies and programs. Task forces focusing on teachers are eramining issues such as the structure of the teaching profession; the natire of teacher training programs; and the future supply and demand of teachers.
- Programs to enhance the quality and quantity of curriculum; factilftes; students; and teachers.
- : Programs to encourage broader involvement in education by citizens; buiness, and Industry. In the area of teacher shortages, the survey shows that States are initiating
 scholarships; loans, or differential pay for mathematice and science teachers. States are also implementing programs to supplement the work of current teachers; such as staff sharing; special summer programs; and alternative ingtructional arrangements (see the poilicy alternatives presented in the next section for more information on these programs):

Based on the results of this survey and a follow-up survey; the Task Force will assemble a set of recommendations to assist States in assessing their current programs; in designing pew and improved programs, and in formulatigg their legislative proposals over the coming year. The followup survey will request more specific information on the types of issues being studied, timetables for action, and proposed recomendations. Possible target groups for the second aurvey include; State education agencies, 1egisiators; and business/ education councils. The recommendations will be encouraged for use by educators, government, and business/industry officials. in addition to the surveys and recommendations, the Task Force is considering a fuil range of alternative products: resourca documents describing the nature and magnitude of the problems confronting education, légisiators, and business/industry offícials; a series of awarenesslaction brochurē for Statè lèaders; à national public information and awareness prosram; audiovisual presentations; and other products to be determined by the Task Force members.

Recommendations-Education for Economic Growth

The Task Force met in Washington, D.C., February 26, 1983, to address strategies for improving the quality of high schooi education, especiaily the skills required for economic growth. The Task Force reviewed a preliminary set of poifey aiternatives, which were previously shared with participants of the NIE Conference on Teacher Shortages in Science and Mathematics: Mȳths, Reaítúes and Research on February 8-10, 1983. A copy of this earliér presentation may be obtalned from John Taylor of NIE ot from Roy Forbes of the Education Cominsesion of the States.

In addition to modifying many of the poitcy aiternatives, Task Force members agreed to work toward developing spectfic recomendations tatiored to kḕ sectors. The sectors identified thus far. are governors; Chief State School Officers and State Boards of Educátion; and business and induetry leaders. The remainder of this paper presents the draft recommendations for each of these three sroups as well as a set of recomendations entitled "Partnerships;" which presents suggestions for action acroses āll groups:

Throughout the next two monthes, the Task Force will develop recomendations: fō additional groups, including State institutions of higher education, legislātors, and parenté organizations: In addition; separate sets of
recomendations will be developed for Chief State School Officers and State Boards of Education. The recomendations for the business/industry sector will be expanded.

The finai meeting of the task Force is scheduled for May 4; 1983. Prior to acceptance by the Task Force of the final recomendations; appropriate agencies and sectors will have an opportunity to reviē their respective sets of recomendations. The reader should keep in mind, therefore; that the recomendations presented in this paper will be further revised.

TASK FORCE ON EDUCATION FOR ECONOMIC GROWTH-
 Aotions for Governors

The key action for Governors is to assume àstrong leadership role in supporting educational improvement in concert with State boards of education, chief State school officers; higher education authorities, and State lēgislātors.

1. Ēstābísh à Stātē lēvel Tās̄ Forcé consiṣting of leaders froll èlementary, sécondāry, añ highér education; business;
 parties to:
a. Examine the current status and needs of pubilc education; éspecialiy in science and mathematics.
b. Sét State priorities and goais for improving education.
c. Recommend programs and policiēs to improve educátionāl programs.
d. Mobilize public concērn and comitment to improve public education:
2. Take a strong leadership role in projoting working partnershipe at the State and local level among parents; communt: leaders; businesses (management and labōr), governmentes; educators; and the scientific communty to strengthen education.
\bar{a}. Invite busineses/industry to work with schools in dèveloping strategies to upgrade course curricula; increase pupil enrollment and performance; Increase the supply and quality of teachers in critical flelds; and improve the public understanding of the need for greater investment in education.
b. Work with the State legislature andor private. industry to provide seed funds to local school systems to establish local education zesource * teams consisting of representatives from the above groups and given the mandate of using local resources to significantly upgrade the quality of education.
3. Work with the legisiature andor State board, to adust certification requirements to ensure that teachers are qualified in both content and methods in their areas of instruction.
4. Work with State authorities to establiah a deadine by which all teāchers must be certified in their fieldes of in̄struction. Then, provide funding to implement training programs for teachers at all levels which will enable them to attain certification in their fields by the deadine. The prosrams could be established in a number of ways:
a. Sumer institutes operated by ingtitutions of higher education.
b. . Provision of graños to support tuition and fees for college courses offered during the summer or in the evening.
c. Extension of employment in order that teachers may remain employed during the sumer months to work on certification in teacher shortage areas; special curriculum projects; participate in intensive training programs; or upgrade their technical skilis.
5. Seek funding to provide sumer employment for lead teachers and teachers in critically needed subject areas to work during the summer and develop new curricula, teach courses, train new teachers, work with commuity ieaders on school improvement projects; and improve their own instructional and management skills.
6. Work with State and local boards to provide special awards for outstanding teachers in various subjects and levels and for administraters with recognition and substantive rewards (e.s., professional perks, sabbaticals, education grañā or cāsh bonuses).
7. Work with State boardo and the State education agency to éstāblish à statē̄lde curriculum study comittee consistins of educatoros in various subject areas; business and civic leaderā; experts on new and emerging technologies; étc. The objectives of this committee will be to:
à. Evaluate current curiricūlūn goals and standards.
b. Determine competencies students will need to participate effective in the workforce and public life of the future.
c. Update and strengthen curricuium objectives, especially in science and mathematics.
d. Develop a plan for computer utilization in the school curriculum.
8. Estabilsh a statewide testing comission which can work with. íocal school districts (IEA's) to:
a. Set standards aid assess student performance at key points throughout the student's career; focus on basic skill.s and prerequisites.
b. Identify student déficienciē early and requirē effective rē:mediātion:
c: Provide encouragement for programs of academic excelleñe for all stưdents.
9. Work with your State education agency and locai districts to deveiop programis which promote and reward student achievement.
 students who enroll and excel in courses that exceed the minimum required.for graduation.
b. Crēāe summer iñtitutes where āvanced or
 iñtruction iñ particular areas of need.
c- Establish alternative schools at the State or local level where students can move to develop higher level skills in specialized areas.
d. Establish a variety of academic competitions for studentes and provide recognition; $\bar{a} w a r d s ;$ and pirizē for high achievement (e.g.; mathematics and science olympics; writing contests; problemsolving competitions; etc.).

TASK FORCE ON EDUCATION FOR ECONOMIC GROWTH Actions for Chief State School officers and. State Boards of Education

State lēaders hāving primary responsibility for the operation of State elementary and secondary school programs are the State board members and the chief State school officers who direct the work of the State education. agency: Much of the work of the State board and the chief State school officer requires the involvement of the State legislature, the governor, State teacher administrator traiming inetitutions, and local school leaders. Fxamples of things that chief State school officers and State boards of education can do are:

1. Work to estabísh and funđ a State mechanism for educational R\&D in areas criticai to improving your State's educational programs
a. Study and implement projects involving fundamentaj changes in the occupation of teaching; e.g.g differentià stáffing; new reward structures; or new evaluation models.
b. Implement models of teacher and administrator evaiuation involving peer review, state of the art standards; and rewards as well as sanctions.
c. Fund curriculum development and testing in
 economics; career awareness; witting; problem soiving; étc.
d. As̄̄ēss stātewide equipment and supply needs in acience education and determine the level of support needed from the State level; provide matching funds ($1 ; \bar{e} ;$; $7 n-30$) frow the State for science iaboratory equipment and, materials.
e. Study the changing role of the teacher and uses of the oomputer and other new technologies in science $\%$ mathematics; and other discipilnes; develop a State plan for computer utilizāion in education.
2. Work with the state lēisiature; institutions of higher education, and private funding sources to provide scholarships and loan forgiveness programs for teachers in critical shortage areas; i.e;; science and mathematics.
3. Work with iocal districts to establish an aggressive recruiting
 critical shortage areas.
4. Work to establish periodic professional sabbaticals for outstanding career teachers:
5. Estabiish State feacherfadministrator certification and recertification standards and guideifnes which are rigorous and relevant.
6. Modify certification requirements to permit people with opecial éxpertise from indūtry; academia, or professional organizations to teach on a team; part-time; $\overline{\bar{a} d j u n c t ; ~ o r ~ s h a r e d ~ b a ̄ s i s ~ a n d ~}$ encourage local districtes to ūē thēē rēsourcēs.
7. Establish administrator certification requirements for the inclusion of management theory and experience as a precondition for school administration.
8. Provide increased time for instruction through State funding; accreditation, and college entrance requirements which result in:
a. Leng thening the school year.
b. Lengthening the school day.
c. Decreasing non-instructional demands on teachers and class time through the use of clerical aides and hetter management techniques (computers; étc.).
d. Decreasing non-instructional demands on students.
9. Recognize and reward teachers and adilnistrators who exhibit outstanding instructional and managerial leadership.
task force on education for economic growth Actions for Business and industry

Bualneas and industry leaders may play important roies in renewing and supplementing our education and training systems. Specific actions thāt may be tāken are: "

1. Estāblish collaborative programs between teachers and persons from busineselindustry for shared staffing; training; and exchange opportunities.
a. Establish exchange programs between business managers and educators.
b. Encourage interdiscipinnary programs at postsecondary education levels between schoois/ departmente of education and schoois/departments of business and public administration.
c. Estabíssh programs for teachers to work as interns in induestry and for industry officials to. seque as part-time instructors in public schoois.
2. Share or loan personnei to participate in tean teaching of sophisticated technoiogical concepts.
3. Provide aides, volunteer and paid, to assist in instruction and to reduce teachers' non-instructional responsibilities.
4. Loan, donate; or seil equipment and provide persoñel to schools or school systems. Personnel support wight range from volunteer tutorial programs för both disadvantaged and advantaged students to regularly scheduled instructional opportunties for industry officials.
5. Recognize and reward students and teachers who are judged to be outstanding.
6. Provide the use of company/college or university trainigg factlities where it would not be cost efficient for school districts to build and equip comparable sites.
7. Provide laboratory space for teachers or átudents to cariry out experiments, preferabiy with guidance and support from industty or university officials.
8. Provide support for comminity activities which contribute to education. For example; provide smail grante to librariés; nature and science museums; pubilc gardens; art museums, etc.; in order that these institutions might establish special instructional facilíties avallablé to the general public and be accessible to studente during the school day.
9. Provide resource materials and curriculum assistance to public school science and mathematics programs ejg; special units on topics such as energy conservation; robotics; industrial processes; etc.
10. Involve students in programs such as Junior Achievement, to acqualnt them with the economic system.
```
                                    No
```

TASK FORCE ON EDUCATION FOR ECONOMIC GROWTH
Partnerships: Actions for Joint Implementation by Government; Industry, Academia; Professional Associations; and Schools

Collaborative action among the political; business; educational, and public leaders of the State is critical to renewing our education and training systems Specific actions that may be taken are:

1. Participate in local decisions on education programs and policies.
a. Es̄̄̄āí̄̄̄ a clearinghouse for partnership information designed to serve parents; communty; business, labor, government: educators; and the scientificfengineering commuity.
b. Deveiop and disseminate information packets on how to develop and operate efficient and éffective partnēships.
2. Promote programs linking schools to business; academia and profēsional associations:
a.: Encourage Industry/professional societies to sponsor scfence fairs and judge student research projects.
B. Jointiy sponsor; at the local level; annual Education 0lympics programs; whereby each school puts together a number of teams to participate in educational competitive events. The model for such a program is the athletics program at each school.
c. Estabilsh a Retired Scientists and Engineers" program, whereby those who have retired but wish to remain active in education can be cälled upon to provide specialized instructioñ.
d. Estabilsh sumer internships for students and teachers to work in industry; government; or ic uñversity laboratories.
e. Sponsor; in conjunction with other local industries; an ongoing series of forums for parents, on the role of education in preparing youth for employment and citizenship.
f:' Establish adopt-a-school programs which link businesses to schools.

g. Assist in training teachers and administrators in the useps of new téchnologies.
3. Provide rewards and incentives to attract and retain capable professionals.
a. Estabifsh scholarships; grants; graduate féliowships; other forms of tuition assistance; and forgiveness loan programs for both new and current teachers.
b. Offér financial awards or training funds to $\overline{\mathbf{s}} \mathrm{chool} \overline{\mathbf{s}} \mathrm{taff} \overline{\mathbf{s}}$ or individual teachers who are recognized $\bar{a} \bar{s}$ outstanding by their peers.
c- Develop an "Excellence Recognition Program" which provides outstanding teachers and administrators with various forms of communty recognition and financtal rewards.
d. Provide incentives for qualified business and industry personnel to teach in mathematics; science; and other technological areas.
4. Provide laboratory space for teachers or students to carry out experiments, preferably with guidance and support fromi industry officials (management and labor).
5. a'Actively encourage the participation of: women; minorities; and . other students in mathematics and science.
à Deveiop speciai scholarship programs for women and minorities.
b. Distribute to teachers and students materials designed to encourage women and minorities to enroli in more mathematícs and scíence courses.
c. Estabilsk-"Mentor Programa" in which students work as techníciai research assistañs in industry, college, ō government laboratorles several hours per week and during summers.
6. : Increase student apareness of carēer opportunitiés.
a. Provide information to administators, teachers; añ counselors thát can be used to heip students plañ for careérs̄
b. Invite iocal business and industry offícials to schools as guest speakers to describe the nature and extent of career opportunities in the State.

〒. Develop à coopegative sumer job program to provide studeñs with understanding and experfence in a variety of careers:
d. Arrange for groups of students interested in particular careers to visit relevant organizations with their parents.
7. Ētablish formal programs whth enable secondary students to receive advanced training in science and mathematics by enroiling in courses at pearby coileges and universities. Students shouid recelve academic credit for their work.

1

244

DISCUSSION OF
 PUBLIC AND_PRIVATE SECTOR RESTPONSE
 TO THE TEACHER SHORTAGE IN SCIENCE AND MATHEMATICS

Lyñ Gray̆, Vice Pressident of Educātion, New York Urban Coalition
i think i need to tell you a very short story to begin what beems to me to weave through a lot of my remarks. The story is à atory of àitttie mouse. This little mouse ifved in a very, very large mansion. He was an extremeiy fortunate mouse. He hàd the run of the entire place. And as life would have it, he gradually sē up à network of rēally beautiful support systeme for
 1magine.

Then one day something entered that mouse's world which was so unfathomabie and terrifying it reaily began to shrink all the possibilities of the mouse's worid. You can guess-it was the worid's most ferocious cat. And this cat-graduaily, on a day-to-day basis, began staiking the mouse.

Little by littlé, the mouse's world shrank and shrank and shrank, until finālly he was holed up in a little tiny hole in one of the baseboardes in a
 to do. Finally he decided, "Well, I'm done; I'ill dead," and he began to think of whatever the next ilfe is supposed to be:

He was sitting in sort of a melancholy state when he heard the world's most incredibly exciting sound. He said; "I don't believe my ears:" He heard the most gracious sound fmaginable-the ferocious bark of an incredible dog:

And he instened, and he said, "I don't beiteve this." And he instened and instened and; sure enough; the bark was powerful; and the cat had obviously run away.

The mouse said, "What am \bar{I} going to do about this $\overline{\bar{m}}{ }^{\bar{m}}$ He thought, "Therés one plạce I stashed the perfect piece of cheese." So he decided, "That will be my first trip."

So the mouse stepped out of his hole and began trotting across the room in order to get the cheese and found itself caught in the furry paw of the world's most ferocious cat; and was just stunned and sad. The cat held the mouse out and satd, "Gotcha."

The mouse was puzzled, and the cat gaid, "Look, before $I_{\text {do you in, is }}$ there anything you want to know or anything ycu want to say?"

Thè mouse said, "Yes, there is basically one thing. What about the dog?"

And the cat grinned and said; "You know, sometimes it pays to be bilingual."

Now, I an really going to connect that to my comments-if really am. I wanted to connect it once in a simple way. i was saying to a fiend of mine at lunch that there is something powerful going on in a room like this. The different languages and the different orientations that are in this roomare powerful. There are researchers; scientists; school people; practitioners; ét cetera.' And those of you who have been going to meetingsilike this over the last decade or $2 \mathbb{P}$ years know that that is a new kind of phenomenon, where we are actually trying to have dialogue anong people who look at thē $\overline{\text { a ame }}$ probiem; but iook at it from very different perapectives and need tō leara tō speak with each other and to each other:

The second thing that struck me this morning was people pointing out how children loge their excitement about science between the third and the eighth grades. I thought of the junior high school that's a block from my house in New York city where I was sure that last year I must have saen maybe thousand Rubik's Cubes-mpilions of kids spending hours and hours and hours playing with what is à scientific and conceptual mathematics device. They were extremeiy stimulated. They ddn't know they had iost an interest in sctence ory that they weren't abble to hanilie it. What they probably were experiencing was od what had not been in their daily ifife in the schooi-the kind of excitement - D that caught them. They spoke a different language than the one they were being asked to respond to:

The third thing is that there is a bilingualism that is being promoted by the President. That would surprise him, wouldn't it?

It's the public/private sector dialogue. And this panel is talking about thät. This panel is saying that there is public sector schooling and there is private sector resource and private sector need, and that some way these things have to come together:- In reading the papers and in hearing the presentations, you take in a huge range of particular things that are being done in two kinds of situations, followed by the Education commission of the States (ECS) survey of what really needs to be done on the national levē
\bar{I} want to comment on that stuff, but I want to put it in the context of a comment that Dean Reily made this morning because it reminded me of something eise that was a working rule of thumb in New York City- His comment ran something like, "Bureaucracies have an aimost ābard capacity tō awallow innovation without producing change."

We had a working ruie of thumb in New York city a few years ago-we've gotten a iftile bettē since then-that went like this, "Every singie day; someplace in New York City, èvery concelvable educational innovation is going on and having very limited impact, and not spreading from one site to another." It wasn ${ }^{-1} t$ for lack of new mousetraps that we were being overrun by जice. It wās for lack of understanding how to implement these things in existing systems and how to build with our existing resources-our tsachers; our professionais; our communities-in order to take advantage of what was there.

That happened a few years ago. That ī̄ àll cātalogued undèr reāearch that
 is a lot of stuff that is supposed to be good; that a lot of people say is good; that a lot of people want to have happen that doesn't happeri- And there are all sorts of supporting data; and NIE is a repository of a lot of it.

We àre not in a different bituation just because we are talking about mathematics and science.

We have changed in New York City. I can stand here and be genuinely proud of the movement in our school system over the last geveral years. We have turned around all sorts of trends: We are doing better on formal tests, et cetera: But 11sten to this: Still we have a million kids, 45 percent of whom drop out of high school; 60 percent of the Hispanic kids drop out of high school. We have 250,000 of what we call ghosts. These are kids that nobody knows the whereabouts of except that they are in our city. They don't show up in schooi. They are in between the ages of 16 and $20 ; 15$ and 20. They are there: We have $60,000 \mathrm{kids}$ who are not mathematics and science ilifterate; they are just illiterate.

I think one of the thinge that always sobere me is listening to a lot of connections between different resource mixes. The Argonne thing, for example, where there $1 \bar{s}$ a program of 15 kids who are going to do such and such. I applaud it and. \bar{I} think it's incredibly powerful. But we really are talking about a very awesome reality when we talk about major school systems. And New York is realiy not atypical. You heard the Los Angeles story this morning and the Houston story, et cetera.

S̄o I just want to remind us that what we are talking about is a set of interventions with children-and there's a lot of them-and what we have to do ī̄ find ways to get thise particulà āgendà into a lot morē livē $\overline{\mathrm{a}}$ thān we have
 reminiscent of the reaponse of the private sector to the current administration when it sald, "You will now handle social programs." Thanks, very much: We can be committed. We can make linkages; but don't expect us to do what couidn't be done when there was a lot of other stuff going on.

The comment; "No one flunks a museum;" triggered something in my mind. I used to run a bunch of alternative schools in New York City. One thing I discovered was that when it got really boring in the achool, if you wanted to know where to find the kide, you went to the museū. Becaūse lots and lotē of

Now, they didn't flunk; but they never got credit for it; and it never got built into their experience, By itseif; it probabiy provided stimulation, but all alone it reaily didn't do what has been called for. The kinds of things that are called for in these innkage programs are ways in which new resources and different conceptualizations can reaily infuee the experience of kide.

In -my New; what went on in this panel broke down ā followa:

I think we have examples of two particular innovation patterns and then a large policy study that is right on target for some national policy questions: the public/private stuff, the mathematics and science stuff: I think that it's about alternative and augmented resources to large school systems. These are the places where the kids really are. The New York City public school budget is $\$ 3$ billion every year. Chicago's must be $\$ 2$ billion: We've got a million students and chicago has about the same. So we spend a lot of money in this country on schooling.
 Argonne Laboratory wanting to infuse the entire Chicago school system with a better approach to mathematics and science-that is exciting. The problem of actually doing that and having enough leaven to actually affect the whole loaf is really; i think; a very tricky reality and something that has to be addressed here.

I want to underscore how exciting it is to find again in this country in the private sector and nonpublic school environment people reaching out to the schools. I think the comments in one of the panels this morning about public education becoming upbeat finally is noteworthy and true. I just want to put that note of caution in.

I want to tell you two stories that summarize something for me about schools.

One comes from back in the 1960 's, and we wren' \bar{t} talking about mathematics and science then. We were just talking about urban problems. We were talking about trying to enfranchise people. The late 1960 's ln our urban centers were ab period of au huge outpouring of corporate American resources to $\overline{s c h o o l s}$. In New York; we had 19 corporations that sponsored schools by themselves: By the mid-1970's; we had two.

It wasn't that the corporations turned into bad guys and walked away; it was that over and over and over again the experience of the private sector in trying to make that link went something like this: "We thought we came in to work on the problem of"-I'11 put it in today's concepts-"mathematice instruction at the high school level. He got into the school and found that the level of problem in the school organisms. the school situation, was so vast that in many cases we were trying to recreate the whole school: and we were not able: We were not able to give what we had; and we became discouraged and left."

If you look at the history of the 1970 's in urban America, you do not have a lot of corporate presence. You have ixtle places where it has ingered
 one thing that was a major factor in that was the inability of the school system to honorably make the lInkage, and to understand what it meant to bring In somebody else with a particular kind of resource, and to meet them much more than halfway so that the benefit got to the children.

I have a colleague who today is in ki Pasco, Texas, on a ford Foundation study- They are looking at exemplary high schools across the country. El Pase is one of many cities that has nominated several of its programs and said; "We have exemplary high school education."
i was tajking to wy colleague on the phone lāst evening, ānd she sād, "Let me tell you the story. I went into the school"-nand I don't know the
 exciting and vēy innovative and really work with kids."

Her task was to interview all sorts of people; sit with kids; sit with teachers, et cetera, to see what it was like, how it feit She said, "I was reāly stunned because every singie time I asked thís question i got a blank look back. I asked the question, 'What is it that makes your school so special!' and nobody could answer."

First of ali, they dídn' \bar{t} feel they understood the question; they couldn't factor out, they didn't know how to talk about interréātion̄̄hips in the
 the larger mission of the school.

But there wās a sense in that buildj一 $\overline{\mathrm{a}}$: "This is just a building and special? I don't know." She said the feeling in the building was pretty good. It wasn't àgreat; great school; it wasn't a bad schooid But it was just hér sense that the people who were in there didn't apparentiy think, "We are a collective body of people working with a group of kids; and this is how we are doing it. This is how we come together on their behalf. This is what we are targeted toward."

The Houston story with the incentives=才the $\$ 800$ incentive; for all that it míght mean about special \bar{s} chool districts \bar{s} truck me as interesting because everybody in the building working with all those kids was inciuded in that process.
\bar{I} want to make two or three comments about partnersinps and about linkages, because I think they are going to be central for the next 10 years of our work for sure-

The first ís that it is often a very difficult matter arriving at a commonaifty of goà and direction between museum; Argonne Laboratory; IBM; whoever it is; and school system and school. The language difference; "the bottom íne;" as was said this morning by some gentlemañ-ali of that stuff is just two different worlds. Until we have sat down together and worked through this material over añ extended period, we really waste a lot of resource and a lot of energy. The problem is that in most cases we think we understand each other way before we do. It will take significant attention to the process of getting started if we are to have any chance of making an impact.

People have walked away from most of the projects we have seen because they thought they knew what they were going to do before they actually did. And they got in there and they got very disillusioned. They didn't know how to have followup; they didn't know how to talk. They expected something from the school that it couldn't deliver. They expected something from the corporatiou that it didn't want to give.

There needs to be a tremendous amount of attention paid to beginning these things gently and carefuliy. Science is obviousiy a need in urban schools. For me, it is just really sad to see the number of hours that our high school kids are not in school; and the number of hours they are in school and not excited about learning. They are not bad or dumb or dull kids. We are just not putting stuff in front of them and working with them in a way that is stimulating them. But if we bring something in, an Adopt-A-School project; for example, and we don't work this stuff out; we're golng to lose the students and our mutual effort.

Secondiy, i would offer a coment about school teachers. And I think they are some of the most remarkabie people in the whole universe. One thing that $1 \bar{s}$ fairiv true about them is that most of them have never been outside the culture of the school. Most of them have not been in the private sector; they have not been in the work force outside of the school thing: Their expectations of what they are trying tō match in their ciassrooms are not framed out of à reaísistc personai experience.

Atlanta has taken groups of teachers and put them iñ the private world to let them experience it, with no goal-not so you come back and do such and such; but jūt so you know, $\overline{s o}$ that you are not limited. If you are going to be the bridge between our children and this world; make sure you have experienced it.

Under the mathematics and sclence heading, somebody commented that you don't see science teachers do science. Probably most science teachers in public education don't do science, haven't been around anybody doing science, and wouldn't like to do science. But that connection is very profound because we are trying to get the imagination of teachers to stimuiate the children.

The third thing is the ciarification of roles. I guess I alluded to it. Very of ten the level of false expectation between people in these mixes is astounding. I just want to call attention to that again.

The fourth thing is the timeline: In the Argonne paper the coment was, We have a timeline. We are not up to it yet. " And when I read the paper, I particulariy noted three phases: We are going to start, we are going to expand, and then we are going to do the whole syatem.

We have been working in New York City now on a couple of educatiomal innovations, and we are in our 15 th year, and we are finaily starting to move into mābe 30 or 40 percent of the gchoois: We may not be very smart; but it isn't going to happen inside of a reai short time. There's a lot of stuff that has to be iaid out thoughtfully and carefully.

My lāst coment is a bottom-1ine comment- one of the things that inink happens in these partnership linkages is that we spend a iot of time thinking of the roles and relationships of the vartous players; but we have not learned how to focus on the children and what they really need.

One of the things we are starting to taik about in New York City is what we cail an "Accord for Youth:" An accord means that ail of the players-aili of the peopie like us who realily have some stake in our kids; whether we teach them ōr, as communtry people, we need to hire them-come together and actuaily make comitqents among ourselves to pool resource, imagination, and comitment, to see that these kids get the kinds of things they need. So we really begin to think over time of reshaping our relationships, not just go
 junior high school kids oso thē don't disappear from us? What kindes of experiences can we give New York City's $200 ; 000$ junior high school kids so that we don't lose 100,000 of them in 4 years; and so that a lot of them don' \bar{t} end up at a much lower level of development than need be?"

My sumary, i guess, is something inke this. it think that one of the most upbeat things that is going on nationally now is this public/private possibility. I think the mathematics and science thing is a symbolic and very important way for us to work together on it. I think that: it can build some things that are very powerful, but it doesin't do it automatically. A lot of these things are going to be built on the pāajion of the people thăt are hére; they are going to be built on the luck of some of those that try it. But we āre tāking about sustāining major growth for kide all over our country, and

CLOSING SESSION

Thomas Good; Professor of Education and Assistant Director of the Center for Research and Social Behavior, University of Missourl

It is good to be here and to be part of the conference. My compliments to those of you who have stayed through 2 days of proceedings.

My colleagues and i represent four captives who have lived through 2 exciting days ifstening to many presentations filled with ideas; problems; dilemmas; contradictions; but all-in-all an exciting set of papers.

Our intent here is not to synthesize or to put what we have heard into a simple caption; but rather to probe through the possibilities; to look at the ideas that have been presented and, if anything, to widen the funnel of possibilities that have been examined here so that in future activities, in terms of responding to the problems, we end up with a wider information base and a better response.

Át this point i turn to my colleagues, who will have the opportunity to respond to the ideas, what they heard, what they felt, perhaps some of the things they did not hear here at the conference.

Rob̄ert Stāē, Professor of Education
Center for Instructional Research and Curriculum Evaiuaíion, University of ilinnois

Tom; you asked what we had not heard at this conference. No one mentioned Creationisur. Perhaps everyone thinke that crisis is ovèr-but we ali know that evolution and adaptation of science and mathematics education goes on-

I, wās imprēsed by Wayne Welch's recomendations for needed research and agree that the student classroom activity and contexte need more átiention. I will emphāsize those today in my remarks; though my primary áttention will be on visions of the science teacher.

Let me start with a theme that Jim Wilson and Jeremy Rilpatrick emphasizéd, and many others have alluded to in this conference: Success in public education depends on teachers with vision and à public vision of teaching. But the vision changes. A viaion of teacher as Mise Jean Brodie is out of a past to which we cannot return. The television vision of teacher as Welcome Back kotter is a compassionate but mindless vision we cannot accept and must fight against. The vision of Bob Gagne of teacher as behaviorist and preparer for testing is à vision thāt, in my opinion; both denigrates education and the teaching profession. The vision of teacher as curriculum developer-if that means developing lessons that other teachers and districts would use-should have been destroyed by Commissioner Sidney Marland ${ }^{\mathbf{s}}$
farcical and iuver completed program; Education for the Eighties; which once gave 17 school districts the responsibility for building a grassroots curriculum for the Nation. But there sre other meanings of curriculum development and behavior management, such as compassionate eider and ideological guide, that are enduring and needed. They have been referred to by Susan Veiten; Lynn Gray, and others at this conference.
\bar{I} was greaty struck by Secretary Beli's remarks. He got us off on the right foot by drawing attention to the changing nature of our society and giving us reminders of the power of culture, inciuding the economic and political reaifties that shape education. Precoliege education-inciuding. mathematics and science-mare hèd in diminished regard by the pubilc. There is no indication that taxpayers are having second thoughts about the cutbacks in funding for education: Several here have called for a media blitz, scholarships for teachers, and, even increased pay. Thē are needed and may help. But we canot go much further whth the ldea of the "competent teacher in front of a class." We cannot effectively retain the old vision, the myth; of \bar{a} teacher $\bar{a} \bar{s}$ knowledge-giver. Knowledgeg getting already has shifted to other channels.

What Ter $\quad \bar{i}$ Beil did not say is that bigh technology will change the very nāure of knowiedge-not just its transmission. What is worth knowing will change; what will be considered as evidence will chamge. What a computer can $\bar{s} t o r e \bar{w}$ anecdotal: The kind of interpretive knowledge to be found in a good textbook or in the lecture of a good teacher will continue to be replaced by 2-minute sumaries uimicking those on cable News Network. The teacher increasingly needs to be reacror, commentator, and director of continuing learning:

What is logt already is the notion of teacher as knowiedge-giver: And it can't be regaided. The tactic followed for at least a decade now has been to reduce the coatractuai" task of the teacher; the syilabus for the teacher, to teach cniy the subject matter all teachers know, and to claim that these knowledges are prerequisite; hierarchical essentials for the complex learnings and fullnegs of education. Much of the pubilc has bought that. And it has helped establish the ryth that such indicators of achievement as Sát and National Assessment $\overline{a l s o}$ indicate the quality of education occuring in the Nation.
i know thà Roy Forbes joins me in whahing that test score meand were not given such credence as indicatoris of educational effectiveness. But the practice is conmon even among education leaders. Patricia Sheil indicated that Houston pays teachers incrementaily on the basis of achievement test gain scores. Many in the audience nodded apprectatively. others of us cringed. The various téts are reasonabie correlates of certain learnings; but they make a most unfortuate; incorrect announcement $\bar{a} \bar{s}$ to wat is mogt imporeant to leamm and to teach.

We don't kow what youngsters will need in their ifves. We don't know what demands the future will make: We have to rely on our best guesses of course, but we also should rely on the intuitions of teachers and the intuitions of foungsters. We have survived as creatures on this earth largely because, of our intuitions; and we should continue to help the coming
generations rély on theirs. Our tests announce that the objectives identified by the aúthoritiē are much more important than the interētes and curiositiē of individuals. The question is not so much "do the tēts tell us who is achieving?" but, "do the tests tell us what is worth learning?" Jin Wilson alluded to the obstacles to learning caused by testing. Allow me if you wili to present a tiny bit of data. In an ongoing study in a large school district we have repeatediy asked teachers and students the following item:

How much have each of the foilowing interfered with youngsters getting à good education in your district?

Rāciā dis̄crimination
Sēx discrimination Bilingualism Overemphasis on testing

Overemphasis on testing was seen as much the greater oostacie with over haif the teachers and students indícating ít as at ieast a lit $\bar{t} l e$ bit $\bar{a} \bar{x}$ interference. i raise this issue because I bel-eve the vision of teacilng and education for the future has to be based on \bar{a} realization of the fundanental conflict between control and educational competence. A great deal of syllabūsbuilding in the 1970^{\prime} s (it could hāve been called school-based cúrículūm development in many placess) wass oriented tō giving the teacher greater control in the classroom; giving the district greater articulation and standardization, and making officials at Federal; State; and iocal ievels; and university consultants, appear to be doing something to improve education: Getting the schools to be more bresinessínke; more accountābie; has occurred; but restrictions on the teacher thus have increased enonmously with diminished opportumities to deai with the insights and imaginations and rognitive . deveiopment of individual students.

On the MacNeil-Lehrér show last night, Secretāy Bell said we have been preoccupied by attention to equal educational opportunity. I agree that that has interfered with good science and mathematics teaching. I disagree with his implicātion that it wasin't as important to increase access to good education as we made it. But we were all too singie-minded about assuring access: We failed to look for other ways than busing and mainstreaming for providing access; and generated great numbers of ciasses in which the students rejected the teacher and the syilabus: Part of upgrading the job of teaching. involves giving the teacher students who will commit themselves to learning and who will resist efforts of other students to sabotage the instruction. With NIE backing, several of my colleagues evaluated Jesse Jackson's Push to Excellence program. As a coordinated program it was ineffective in most schools; but as an ethic; as a movement, as an analysis of American education it was sound. Jackson said that education requires work and that the responsibility for comitting students to work is not the school's responsibility or teacher's responsibility but that of the parents, and the students; and the neighborhood.

256

As part of the upgraded role of teacher; the teacher should have some
 and rights to expel from clases those who do not. our society must find some other place to "warehouse" unwiling workers than in the classroom where tēaching is going on. Our society owes every persou whe wants it an education: Today that should inciude opportunity to learn from clās̄mātēs interested in learaing.

Obviousiy; one way of increasing the interest of students in classroom learning means giving them more responisibility for selecting what they will learn. And another is giving the teacher more responsibility in selecting options for the stuidents to select. Common learning objectives and common standards of achievement across students would have to be difinished. The district and State would have to have less control. It is a fundamental issue of central control vs. effective education.

To some what I am talking about is a pipe dream-but it is far from impossible. It is apparent that this individual responsive way is how most parents teach their own children, how apprentices learn from masters, how Japarese children learn in the ciassroom Jack and Elizabeth Eas̄lèy studied, and how on-the-job training occurs in business ; industry, and graduate schoolindividuailzation of student task and téacher task of course doesn toan that standards are sacrificed-jūst conimon; prespecifted standards.

But \bar{I} have $\mathfrak{d r i f t e d ~ a w a y ~ f r o m ~ t h e ~ e p i s t e m o i o g i c a l ~ r e a s o n s ~ f o r ~ m a j o r ~ c h a n g e ~}$ in the role of the teacher: The schoois have lost their primacy ass the deliverer of informition and ordered knowledge. Television, travel, thé workplace, the marketpiace; the park systems; the librariē, Bonnie Van Dorn's museums, and ōther "linkages," including peè friendships; already provide more understanding of complex scientific and mathematical ideas than do the schools. The schools should be helped to do better, but most students can be expected to learn more and more away from the teacher. The information àvalanche has barely begun.

What is most needed from teachers in this onrushing world is helping the student make the most of outside opportunities, and supplementing them with integrating and ordering agsigniments-reading; problemsoiving; discussions; and profects related to out-of-school learning thogstudent alfeady has begun.

In our NSF science case studies; Jack Easley and our team found that postSputaik curriculum reform projects were rejected by many teachers who wanted to teach what they had mastered, what worked for them: And they should--but more on individual bases. Those teachers also insisted upon teaching students to behave; they felt obligated to sociailze them. This should also be expected of future teachers. Free fioating discussions are not the answer, and most teachers would reject that. Douglās Seager's ideās of teachers having their own science projects is consistent with this vision of teaching. Others such as Crewin and Stodolsky have written about this roie for teachers; and Lynn Gray spoke of it just an hour ago. Twenty years ago agricultural Extension found that many farmers knew more agricultural science than the Extension instructors; so it helped those instructors toward rolés as education facilitators:

The essentíai ingredients of teacher role evolution here are:

1. ōrienting to individual learning, not class learning;
2. orienting to what students and teacher are already interested in;
3. orienting to out-of-school learning opportunities; and
4. orienting to the students wilingness to work

In tomoriow's high tech worid, foilowing these orientations, the t eacher-ās-curriculum-developer makes sense. The curricuium ne or she seeks is individual-finding additionai experfences; readings; and computings for each individual student.

Individuai Educationai plans (IEP's), such ās were dreamed of by the authors of PL 94-192; are needed; but they should remain flexible and largely unwritten; not aliowed to rome today's checklisted aitifacts of competency-based learning. The téacher should be free tō rely as much or ag íttie on today's district guidelines and textbooks as he or she feels makes sense in terms of what is best for individual children and their parentso

We have agreed at this conference that science and mathematics teaching need to be upgraded in the face of a disbelieving public and a cultural blitzkrieg. Many speakers pointed out that increased pay; prestige, inservice training; and exchanges with industry are important goals. But even if successful, they would not accomplish a long term solution. I do not believe we have much control over our destiny; but we can get ready for some changes which will be forced on us. A sensitive and compromising adaptation to the new habitat is essential for the survival of the qualified teacher of mathematics and science.

Steve Davis; Head of Mathematics and Computer Science, The North Carolina School of Science and Mathematics

Essentially, I think I come at this from a different view than some of yoú I was trained as a research mathematician. Before i ever taught anyone in a high school or funior high school, I taught college students. Then I taught graduate students. And as most peopie who do that i was dismayed at the quality of the graduate student at the typicai university i had gone from a very good university with an exceilent graduate program to_a good university where the graduate students were not nearly as good. I did not think I could make them into good graduate students, either. At thát time I was very confused because \dot{I} thought you were supposed to téach mathematics to make everyone a mathematician. I think that is one of our mistākes.

So then i got this tremendous privilege and feli into high schooi teaching: On the third day I noticed somet tifng. When you teach 5 times a day, your iegs give out first=-I had never been so tired in my whoie iffe-and your voice starts to go. And then you sense; "My goodness; though; when you see them every day you see the prọgress.". When you work with them closely, you can see that students learn in different ways.

At first, I taught like mast college teachers, \bar{I} lectured. \bar{I} thought that my students had learned from the lecture. Nou I know they did not learn from the lecture. They learned from doling the problems in the book; they learned from talking to their classmates.

What i would inke to put in context here as quickiy as I can is the
 Ass à speaké sald earlier yesterday, view it also as à time of opportunity.
 movement. I want to share with you the evidence and the symptoms of the movement :
a.

First, we have microcomputers coming fnto classrooms with teachers getting very iftile to no preparation on how to use them. Yet, they are, betng placed quickiy in the classroom because school administrators feel this lis one way to deal with computer literacy.

Sécond, there are many studies addressing the moderaizatiou of the school curriculum: There is a grassroots movement that says; "We know the situation must change." I don't know if that existed at the time of Sputnik. Right now the teachers know there is àneed for curriculum change. and they aree looking for guldance.

Yet, I get incredibly frustrated. I work with teachers who use the pocket calculator to balance their checkbooks; to compute their grades, and to make their answer keys. But, they will not let their students use the pocket calculator on any graded work. We have a real hurdle here, because the calculator is a tool that they are familiar with, that they use, and that they consider friendly.

On the other hand, the microcomputer that teachers are being advised to use is not friendly, and they do not know what it can do. That worriés me à lot. These examples indicate there is definitēly à need for instructional leadership.

Today there $1 \bar{s} \bar{a} \bar{a} \bar{s} 0$ a problem with the reaching of mathematices. That is, we are confusing the product of mathematics with what mathematics is. I did not know the difference between the product of mathematics and what mathematics is until the second or third year of graduate school, and that concerns me. There ought to be some way that education depart rent faculty and mathematics faculty could work together so that the mathematics courses are not just taught as though they are preparing mathematictans, end the education courses are not just taught as though these people will teach a wide variety of subjects. They ought to be able to integrate mathematics and teaching.

Not long ago, a colileague pōnted out something to me thàt really got my attention: if a teacher wants to teach intuition; understanding; and the ability to be a learner for lifé; the tēacher is open to attack; because i. someone will always ask; "Well, did the students learn this specific fact and did they leãan that specific skill? Well; what did they do in your class?"

Oh, but they learned mathematics and the beauty of it and what it is and how to solve problems." If you are not respected by your community; that inne falls on deaf ears.

We need to ratse the status of the profession so that teachers can do whar they need to do and not just be teaching computation. The pocket calculator can be used to teach estimation and other kinds of cognitiye skills; in addition to computation.

Technology has started this grassroots movement. When say "technology,." - I am thinking of all sorts of things. Lét us think in terms of video disks; teleconferencing; and the computer. Wait until you see the advances in teleconferencing; now that it's not regulated.

Today teacher-trainers have an additional burden. That is, teachertrainers must become more knowledgeable than almost anyone eise about the application of technology to instruction. They cannot respond to the task by offering training in how to use this piece of equipment or that piece of equipmént because they canngt outguess technology. Among many tasks; teachers should help students learn what is really fundamental to technology; instruction; and communcation so that no matter what the technological change is in the next 20 years; they will have a base from which to work.

My instincts teli me that the real future for improving schoọis is inservice training: Why? First, the teachers desire it That is the grassroots movement- Second, i suspect very high proportion of the teachers who are going to be teaching in 1990 are already in the classroom; so inservice training is necessary Third, inservice training can be more responsive to lócal education needs.

I want to qualify my statements with the obvious observation thāt seeme to escape those of us in education who are in áposition to do inservice trāning. Actualiy, no one is now in a position to do it well because there is not enough money. In almost any other business, when people ari involved with insérvice trāning, they are trained and paid while cai thic jobo oaly in this profession do you do inservice where you pay the fee and you are not being paid while you do it: Something is very wrong there. it worries mie a lot

I want to make one more co oment. if wil use a metaphor, one 1 would not have thought of if Dr: Roy had not used his giue metaphor yesterday. My favorite metaphor is that of Peter Drucker's sailboat. Drucker is̄ big iñ manageriai science. He was assigned to look around and try to figure out what ōrganizā́̄onal structure guaranteed success. for a company, and he discovered that all of these companies were different. Some were successful and some were not. He was trying to figure out what it was that made him successful; and he came up with the metaphor of the sailboate

Most people look at a saíiboat and think that the saís propel it=-the equipment in the schools; the; teacher training; the school room and facility itself, parental support, et cetera: But if you think about it; it is the invisible wind that propeis the sailboat.

Right now $\overline{\mathrm{I}}$ see us in à situation where we need some more sāils. We need more equipment in the science labs. The micros are just coming in. But still the wind is going to be the key, and that must be the commuication to the ciassroom and that it is goins to start soon.

But whatever it is; let's do it right and not ry to do 17 different thifges to find out which one works; because the race to improve schools, teachers; and students could be lost in the process. '

Naama Sabar, Professor,
School of Education, Tel Aviv University, Israei

The titie oí this conférence reminds me of a story placed in this country not so many years ago. It was at an international conference on computers which had a contest to provid a very new kind of software for a very simple message. The message was, "Why is there a shortage in meat?"

When the organizers asked the participants what quēstions there were before the contest started, the poles ralsed their hands and sald, "What does it mean, 'reat'?"

The next question came frism the Russians; who asked; "What does it meañ 'why'?."

And the iast question was from the Aminicāns. who asked; "What does it mean; 'shortage'?"

That was not too many years ago. I ail afraid these times are over.
First of all; i wish to thank the organizers for inviting me to such a stimulating conference, with a unique array of participantso \bar{I} am particularly honored to be here because to me it looks almost like the ifse of "Who is'; Who in Science and Mathematics Education."

I accept the advantage of being the last aynthesizer and probably the only foreigner in this audience, and inant to thank the organizers for the very well-thought-out preparation of this conference, expressed in the wide representation here of the different fields that should be invoived in analyzing such an issue.

The papars presented were so thoroughiy prepared, with clear messages and relevant updated information. When you see the proceedings, you will know how many $1982-1983$ references were iñluded. These data were regarding the common wyth virisus reaifíaes in relavant rasearch:

I áso think special cradit should bé $\overline{\mathrm{s}} \mathrm{tven}$ to the diverse approaches that we have heard regarding alternitives that are presentiy taking place successifully in our system:

Being a woman, a minority, i would also inke to congratulate the organizers for the even distribution that was given to contributors between the different ethnic groups and the genders. I take it for granted, even in à profession that is so heavily female, that much of the dectsion making power £̄ $\bar{s} \mathbf{s t i l l}$ male.

Lastly, I would like to give speciā thanks to the discussion moderator who led the contributing discussions so elegantly and so weil.

Now I would like to share with you some of the thoughts; obseryatians; and quesifons that came to my mind while iistening throughout these 2 days: Most of these thoughts have been heard in the past 2 days; but 1 would like to make my own supplement and perhaps rephrase-and it may sound even amplified to be heard from an outsider.

I must admít i feel like tre boy in "The Emperor's New ciothē" coming $\bar{a} f t^{-} \bar{r}$ these two preceding synthésizers with their high-powered questions. I might post some very $\bar{s} 1 m p l e$ questions, such ās: How is it that a country that in most fields of science and technology competes so successfuliy with ali countries in the frēe world, due to your wealth of ideas; quality of warcower: nāturā resources; and facilities; has reached this present cirisis in ziu azas of teaching, exxemplified here in science and mathematics eđueation?

Weil, i think that you aij know part of the reason. This society is not ready to give now what it takes to buid and maintain a quality education system: in saying maintain, I also refer to the implementation system that has been mentioned $\overline{\mathrm{i}} \mathrm{n}$ this last afternoon's sēssion.

Does anybody rēally think we can cariny out èven a few of the wonderful ideas that have been exprēsed here without budgets? Good will and missionary complex, à new tēin for me, are not enough to get good teachers to do the job. Teaching positions offer neither status nor considerable financial compensation, and teachers are human beings with purchasing needs.
it may be exciting for a young student to follow his or her interest in young children and the nurture of knowledge in kids and take a teaching position. But then when he or she plans to build a family, their priorities will definitely change. Or do we say that teàching can only be suitable for second breadwinners?

By the way, I really wonder how wany teachers can purchase an apple-and I don't mean the fruit; I mean the computer--when so many microcomputers are to be found now in their students' homes.
i think it would be fair to say perhaps that among the myths in circulation is the one that gays we cannot get any more dollars into the system; yet the reality is that if we can, it will make a difference.

The exodus of good young science and mathematics teachers into industry that we have heard described so well by Betty vettef is à ciear sign of that. What do we really expect of science and technology teachers? As i see it, they are expected to be subject-matere specialists in an area where changés
àre the fastest in comparison to $\bar{a} l l$ other subjects taught in school. We expect them tó compete with high quality super power educational programs that are now offered cownercialiy by private industry.

We also expect them to be very intelligent broadminded people; with a very clear set of values; to be able to bring into the classroom such toplcs às thé, rélevance of seience to social problems. And those relãions and concérā are incrēasing iñ nūbers on a daỹo-day basis.

But in addition to all of these-and in sip the expectations in manipulating skilis; operating a lab; and so forth-we also expect the science and technology teacher to be a topnotch educator and pedagogue and to handle a great number of problems that the whole of society faces; topics like those Lee has already mentioned: smoking; alcoholism; drugs; sex education; and whatnot. And does the teacher really get recognition for this complex task?

Why is it that an exceptional scientist-and very itkely one of these sctence teachers had to do with his successful career-may win a Nobel Prize? An exceptional writer can stand for a Fulitzer Award. Even a stage decorator can be a candidate for a Tony Award. Yet; the only recognition an exceptional teacher will get is recognition from his own association. The local Rotary Club may acknowledge him as well.

An automobile repairman makes money. A competent scientist; at least in my country, has status. An American physician has both money and status. A reacher here has neither.

Well; out of this gloouy plcture I think one good thing is emergingo There is a tremendousiy heightened awareness of the price to be paid tọ improve science and mathematics.

So we do have the momentum nowo We just need to do everything we can to accélerate that momentur; and it is up $\overline{\mathrm{t}} \overline{\bar{o}}$ the people here to transmit the very
 in power to make things work so tint in 5 yaars; probably through computers; we will not be crying over a deeper crisis but rather discussing further advances in prospect.

I endorse most of the recommendations that have been made and won't repeat them now. But I would like to add to the other explicitly mentioned research need that rēēarch tools should perhaps be used-supplementany ones-other than the regūlà statistical measures. I know the movement is very strong; but I just want to make that point.

There were recomendations about developing opportunties for teacher promotion in school; developing a career ladder for all teaching areas based on excellence. And under this heading I recommend that several prestigious institutions cooperate in estabilshing an award, inciuding a generous cash award, that would probably be donated by industry. and that would be addressed to the reward of exceilent reaching on an annual basis.

I hā ve heàrd some récomendations regarding the importance of elementāy science and mathematics education with rēspect to future choicēs sudents make in these areas. I strongly recomend that you invest more in improvements of science and mathematics teaching as early as possible; even in pregrade school: it has been tried successfully in my countryo Since we now know the enormous capacity of young children to learn and their natural curiosity; i beifeve that it is a very promising field for the investment.

A number of contributors suggested that we look at other industrial countries and change our requirements accordingly. On this issue my recommendation 1s;" Slowly, please." An engineer from the U.S.S.R. will not qualify in this country, nor will a medical physician. A Japanese engineer will qualify. Yet we cannot expect of our eduration system what we can expect of the Japanese. We don't give the same respeict to our teachers that they give. Nor do we give the salaries or provi: the outstanding facilities that the Germans give to their teachers.
i would also encourage industries to compete with each other in pubifcizing how much they give to education relative to their total budgets. Maybe it should become a slogan with advertising; "We are better because we care.; We give more to schools."

That leads me to my one-beforemy-last point gand tisic an urgent need for improvement of your public relations skills when titias te do with your schools.

Anne Flowers in her paper quoted Cremin, that we are providing a remarkably successful education program to the general populationg and ithink that is not well enough known. Why donit you inform the pubile that in spite.: of ali these difficuities; there are outstanding things going on in your schools?

I çan rell you again as an outsider, do you know you hāē a remarkāblē system of librariés-éven in the very small schools-outstanding curíieulum centers? I could go on and on and on. Yet you would benefit greatly if oniy a little of your vigorous salesmanship and marketing skilis could be appifed to your schools.

Last but nōt ieast just as a civinizé country should be judged by the piace it provides ív its elders; añ not for its football players, I firmiy beifeve that a country should also be judged by the priority it allocaces for education, meaning per capita expenditure on education. In that respect, I must give full credit to my own country, where education comes second only to security.

Perhaps the United States Government should iocate education as part of its defense and security ing order to maintain it exceilence and the leading position which it so thoroughiy deserves in our present world.

SUMMARY AND DIRECTIONS FOR ACTION

Thomas L. Good
Gail M. Hinkè
Univerisity of Mis̄̄ouri-Columbia

The summary of conference papers and discussion does not provide a clear mandate for action to resolve the teacher shortage and general ifteracy problem (teachers; citizens; students) in mathematics and science. Certainiy there were important and heaithy differences among participants in how they define the problems and in the ateps they beifeve are most ilkely to solve the difficulties: The conference provided a broader understanding of the probiems, Identified several points which need resolution (and which call for basic research and development activitiēs), and produced ézamples of what some $\overline{\text { agenciē }} \overline{\mathrm{e}}$ school districts, and universitiés are doing in response to the teacher shortage and the literacy problems. The information; ideas; and problems identified at the conference will be of value to school systems as they deal with these issues and to decision makers who face difficult but important policy challenges.

As we write this document in early March; several Staces are passing legislation that addresses certain aspects of the problem (e.g., higher curriculum standards). The Congress of the United States is now deliberating legislation that will provide badiy needed funds that can be used to help correct deficiencies in these areas.

Considering the rapidly growing public concern over these issues and the money that Congress will soun make available; we believe it is ifkely that the money appropriated will be poorly spent in most ingtances. Although the funding will probably be inadequate, careful thought before :hese funds are spent will (or would) have more significant; long-term effects than quick spending will achieve. We acknowledge that there is an acute shortage of mathematics and sctence teachers; and particularly of well-qualified teachers. The problem is enormous and important and the continued economic productivity of the United states depends ipor a successful; long-term response to the shortage and the related prot of scientific and mathematical iiteracy. Clearly, some action must be takeh immediately; however, we beileve that certain aspects of the shortage can best be solved by discussion and basic research rather than by quick spending and radical changes in the curricuium that are based primarily on short-term reaction or impuise.

What, then, are the issues that the participante at this conference beifeve should be studied? In response to this question, we will discuss toplcs upon which there was reasonable consensūs among participante and general problems which cannot be adequately solved by individual States or school districts. We view three broad areas as meriting attention: curincūlum réform, process research on classroom learntng and instruction, and increasing public support (which involves aitering salaries; the status; and dutiel of the profession) of classroom teachers:

Curriculim Reform

The most prevalent view expressed at the conference about the current status of mathematics and science education was that 95 percent of our students (and citizens) need better mathematics and science training, not the top 5 percent. Participants generally; agreed that the present curriculum was producing an adequate number of advanced scientists and that our suppiy of exceptionaliy talented students is not in jeopardy: Stili, most of the programs described at the conference were designed to identify and to educate gifted and Jor minority youth. This is of course understandable (and we need such programs), but it is regrettable that more attention has not been placed upon inproving the mathematics/science curriculum for the āerā̄e studentThe most important is̄aue concerns what can be done to prepare citizens who understand and are therefore capable of using technology in intelifgent and appropriate ways and thus of making informed decisions about technoiogicaity related issues. The answers to this question were varted and complex; but the most frequent response was the cali for a more appropriate; relevant curiculum
 teacher iasue later).

Beyond the frequently stated opinion that curriculum reform was needed; nhere was little agreement as to what direction this reform should take (readers who wish to scientifically conduct their own content analyses of conference proceedings should review this massive report....we encourage repilcation efforts). In part; this is because the conferente was organized primarily as a problem stating group and hence, little time was spent discussing the new curriculum: Because of deciining test scores and student interest, dissatisfaction with many science and mathematics textbooks; etc., there is societal consensus that curriculum reform is needed. But poor performances on assessment instrumente do not tell us what abilities should be measured or how to correct identified problems.

To many citizens and educators, curricuium reform means more courses and indeed many States have passed legislation whích requires that students take more courses in mathematics and science. However, considering that many students develop à distaste for science in elementary school, mandating more coursewolk without seriousiy studying the quality of science and mathematics curricula, particularly in the early $\overline{\mathrm{g}} \mathrm{a} \overline{\mathrm{a}} \mathrm{de} \overline{\mathrm{s}}$; may exacerbate the problem.

Aithoūgh mut papers act the corference addressed the problems of mathe" matics and science education in secondayy schools; we believe that if secondary science education is to be improved; it wil be necēasāy to simultaneousiy increase both the quantity and quality of science education at the elementary level. Studies by Ebmeier and Ziomek (1983) and Stake and Easley (1978) indicate that most. elementacy pupils receive iftile or no instruction in science. In a study of 75 teachers in grades 2-6; Ebmeier and Zlomek found that an average of only 15 minutes per week was apent on science in second grade classes. By fifth grade; this time had only increased to 43 . minutes : Furthermore; the time spent on science in most classes was considerably iower than what the district recommended.

Still, we need further descriptive data on which to base curriculum reform efforts. Until we have such information, it is hàr to know how much time should be taken from other curricula àreāe and dēvoted to science. Schools hāve many subjects of limited value (especially sécondary schools); and curriculum reform in mathematics and science must involve an examination of the total curriculum by mathematicians and scientists; teacher educators; and classion teachers to determine how the curriculum should be altered.

Scientific knowledge is presentiy growing at à rapid pace and ít appears that many technoiogical advances will be made in the next few years. If the Unfted States hopes to prepare ites cititzens to iive in \bar{a} world heavily finfiuenced by technoiogy; educators must determine what scientific information and processes students should know. What do we mean by a "technologically literate" citizen? Although there is no simplē answer to such a quētion; we belleve that it is imperative that the current curriculumbe deacribed and serious scholariship conducted to determine how it should be modified.

Although we acknowledge that the curriculum needs reform; we are not certain what the nature of that reform should be: In fact; it will be Imposisible to make useful changes unless there is a clear understanding of what the curriculum is and should be: We therefore urge that at least some appropriated funds be spent in 1983-84 for commissioned work designed to identify possible areas of reform and ways to achieve improvements. What do we want students to be doing in classrooms in 1993? What are the criteria that we will use in 1993 to determine whether or not the money and time expended in the past ten years have sübstantially fmproved technological literacy? Serious study of these goals in advance might make it more iikely that curriculum reform efforts will be at least moderately successful.

Some excellent study of curriculum reform has been made. For example; the National Council of Teachers of Mathematics has produced a useful; comprehensive statement outining the mathematics curriculum needed in the 1980's. This report strongly advocates more attention to problem solving but does not define problem solving at a functional level. Funds invested in carefuliy designed conferences, research studies, and development activities might yleld criteria that could be ised to construct and to evaluate curricula. With criteria and a broader understanding of what is meant by problem soiving (and other terms such as "scientific ilteracy") we could begin to answer a variety of practical and important questions such as the foliowing: How do we operationally define problem solving? How do we differentiate appropriate problem-solving teaching from inappropriate or poor instruction? What percent of our teachers attempt to teach probiem eoiving? How do teachers? definitions of problem solving compare to those called for in curriculum reform efforts? How do teachers whose definitions of problem solving correspond with those advocated sin the curriculum reform teach (or structure their ciasses) problem solining? Whāt īs appropriate and inappropriate about \bar{p} resent curriculum experiences for students?

Funde invested in development designed to cilarify intended curriculum
 competent teachers who inciude problem-soiving instrontion in their curricula could be identified and videotaped and these tapes could be shown to other
teachers $\overline{\text { to }}$ demonstraté techniques and activitiēs-which characterize effective problem-solving instrüction. We therefore believe that if classroom teachers, educātors; and scientista are given sufficient funds it would be possible to identify and develop more appropitate curricula and to demonstrate them more effectively than the rapid innovation that has characterized past change in Almericañ curricula àilowa. Ā any student of educational history reālizēs,
 iearning, open education, procē̄̄ sciencē, new mathematics) have traditionaliy come onlỳ after à réform hā been tried and subsequent evaluative data are negātive or unintēpretable. If conceptual ciarity were achteved and implementation measures constructed; it would be possible for empirical research conducted fn 1984 and 1985 to determine whether new curicula had positiveit affected studenté skilis and interest in sciencē and mathematics.

Although we do not advocate a national curriculum, we do belleve that the delineation of key curriculum and instructional terms is important. For examplé, thèré àré many questions concerning instruction about an important mathematices concept like "vatiable:" When should it be introduced in the curriculum? What should follow? These are issues that individual school districts cannot adequately resolve with existing budgets and personnel.

In essence, each day in American classrooms, thousands of informal "field experiments" occur when teachers use their own approaches to present various conceptes or principles contained in school curricula. There is growing evidence some teachers cannot improve upon the poor quaility of text materiā̄e (because of inadequate background in science and mathematics) and thus diutort the concepte they intend to teach, $\overline{8} 0$ that many students some conceptes are not corrected, despite instruction. Furthermore; research on instruction in specific scientific concepts in 14 fifth-grade ciasses (Eaton, Anderson, and Smith, in press) demonstrates that many students bring to the classroom misconceptions about scientific concepts such ā light and vision. In this study; some misconceptions were reinforced by the textbook and the accompanying teacher's guide. - It is therefore not surprising that even after 6 weeks of instruction, three-fourthes of the students studied stili heid basic wisconceptions about these conceptes (see Brophy; 1982 for à détailed discūusion of teacher distortion of intended instruction and dependence on tē̄tbook mātērials).

Because many teachèrs do rely heavily on textbook and teachers' gutdes for instruction, any attempt at reforim of curpiculim and fingruction must neceasarily inciude à caréfül examination of textbooks. Freeman; Kuhs; Porter; Floden; Schimidt; and Scholile (In press) suggest that the textbook a teacher uses largè ly determines the curriculum students receive. However, thésé invētigāors found that the mathematics curricula presented in four textbook series which dominate the market vary considerably. They also found considerable differences between the content of various textbook serfes and that measured by some standardized mathematics achievement tests.
 students learn the knowledge of science (facta, concepte, findinge.o.generated by others) but have iftéle opportunity to engage in the process of science: Teiling such teachers to include more science process and less content in
their curricula is as likely to add to the problem as to correct it. Such a recomendation would be vartousiy interpreted and implemented. In addition to study to provide a puipose and direction to general curriculum reform; we need research and development that will heip teachers understand major scientific concepts and learn alternative ways in which such concepts can be taught (to determine how the generai goals of curinculum reform could be implemented in specific inētancēs).

Although thèré is evidence thāt éffective instruction can make important तifferences in how nuch students learn and retain, most of this research has not examined the learoing of specific and subject matter concepts in particular contexts. Some funds should be designated for identifying important curriculum concepts; devising interesting ways to present those: concepts and lor to aj10w students to discover them. Such work could be completed at a national level by teams composed of teachers; educators; and scientists: Uitimately; the value of such work should be tested by empirical research.

We suggest that $t e^{\text {achers }}$ would benefit from viewlog videotapes of competent; talented $t e^{a}$ chers conducting classroom activities related to key concepts or issues (vertable, quantam theory, place value, equivalent fractions). Although it would be impossible to film ingtruction in many concepts (at least indtialy), it seems important to assemble video ifbraries that illustrate the process or problem-solving skilis called for in relation to particular concepts as well as to the areas of science and mathematices generally. Cárefully selected video iessons would be ān improvement over most classroom óbservation, and videotapes could be supplemented by discussion of salient aspects of teachin̄ situations. The potential is éspecialiy great in science, where time lapse photography and other techniques can allow students to observe the efforts of an intervention or to see change occurring over time pertods, and thus to get the benefits of an experiment, when actually doing one experiment in the class might be too expensive or time consuming; or otherwise unfeasible. A variety of technological advances have occurred in the past decade, but teaching has been largely unaffected by them. Such तevelopment work is cheap and relatively straightforward, and it is therefore surprising that so litthe has taken place.

Uitinately, such work flght iead to a bettex understanding of issues such as productive strategies teachers can use, problems or misunderstandings students are likely to develop when attempting to learn concepts, how the se
 to help students with particular fisunderstandings. Such basic information could vātly improve elementary and secondary education in this country. Some rēéearch in this arēé nà been completed (see Brophy; 1982), but it has not beén organized around important subject matter concepts.

Simulation/Curricuium Development

Considering that technology can also make complex phenomena concrete and accessible to students, one wonders why more first-rate simulations and videos illustrating scientifíc processes are not available. For example; some of the complex timefmotion concepts in physics are easy to depict on video. Video-
tapes of important experiments in science would do much to aliow students to see bcientific data being collected and to witness the process of knowledge being accumulated over time until ít has practical consequences. Appropriàtē, selective use of a few demonstrations of the scientific process could help students to develop a respect for the need to measuire carefully to change perceptions as datà accumulatè, etc. Naturally, videotapes would not be a subsétitute for students' actūal conduction of, of involvement with; science experiments.

Aithough curriculum goals are affected by iocai needs and preferencēs, the cost of producing exemplary scientific videos and simulation activitiē is so high that few school districts could afford to develop them. However, once produced at the national level, they would be valuable resrintes for many school districtē.

Several participants at the conference suggested that few students actually apply the principles of science before they pursue advanced degrees. Legisiation presently being acted upon in Congreess involves expenditures for the purchase of new scientific equipment as well as the repait of existing laboratories. Studentes undoubtedly need laborariories if they are to practice sciencé; however, many teachers will need training in order to use new equipment.

Improving curricula and bringing technology into schools where teachers are not prepared to use them will create massive training needs which wil require attention and funds. For example, local districts will need heip in acquiring; maintaining, and using new equipment appropriately. National research and development activities should be conducted to help iocal school distincts evaluate their success in training inservice teachers to use new curricula and equipment.

Teacher Education

If the public school curicuium is to be improved, then careful ittention must be palit to the teacher education curriculum and funds need to be invested (as Lander ass Porter suggested) to study the relationchip between knowledge of mathematics and science and ciassroom teaching. We need to know the content of teacher education programe if such programs are to be evaluated and improved. Unfortunately, we have à paucity of rellable information about how teacher educātion programs affect teachers bellefs; knowledge; and skilla and how s̄ort-tērm training infiuences long-term teaching performance.

Aithough some teacher education programe are helping teachers learn about and utilize technology (computērs, video sinulation, etc.), we suapect that many are not. Teacher education institutions face complex deciaions as they attempt to allocāte scarce resources: For example, they must decide whether teachers should be familiar with computer simulations or be able to deaign simulations. That is, should teachers merely know where to obtain computer software or should they know how to improve inadequate software themselves?

Another important issue which teacher education institutions must address concerns whether elementary teachers should be trained as generalists (āa most currently $\overline{a r e}$) or as specialists. in order to possess a thorough knowledge of
subject matter in any area, multiple; diverse curriculus materials and relevant instructional techniques; elementary teachers may need to be trained as specialists. Such training may be especially_necessary for effectively ceaching a subject such as science, where new information and developments occur rapidly.

It seems to us that some Federal support and subsequent research (guided by agencies like the Nationsl Institute of Education and the Nationai Science Fcundation) could help to indicate in more detail how scarce resources can be used advantageously in teacher education programs it would be pointless and wasteful for each school district to deveiop its own curricula and programs for improving the technologically related skills of teachers and stūents.

Classroom Research

Clarlfication of curiculum goals in mathematics and science should make possible focused but comprehensive research on instruction in important topiçs in mathematics and science. To obtain curriculum goais, however; it wili be necessary to conduct basic research on classroom processes related to these goals. In this section we will describe an important but neglected curriculum irea in mathematics, problem solving. This discussion iliustrates why research is desirable if improvements are to be made in chassroom ingituction and in learning.

In \bar{a} recent examination of much of the mathematics education literature; we found many statements concerning how problem solving should be taught however, we found no caréful analyses of classroon instruction in problem solving. There are critiques of textbooks and critical and insightful examinations of student performance. Indeed; some of the research iliustrating that students can answer mathematical probiems correctly without understanding them is quite important and intriguing stili; it is cưrious that nowhere in the literature can we find statements describing, what takes place when teachers teach problem solving jow do classroom teachers défine problem solving and how do they attempt to teach it? How much time is spent on probiem solving $\overline{\text { a }} \bar{t}$ present, there are no dependable data with which to answer such questions. It seems to us thāt if one wants to improve the mathematiaal problem-solving $\overline{\text { ability }}$ of students in American classrooms; these questions must be answered.

Thus, mathematics educators shouid conduct observational studies of clāssrooms during instruction in probiem solving; particularly in classiooms of teachers who are espeçaily adept zt teaching problem solving. Thére are both theoretical, conceptual; and empirical reasons for conducting such studies. Poiya (196б) nōtes that solving problems is very much a practical art and, ifke swimming or playing the plano, it can be learned only by imitation and practice. He suggests that in order to become a problem solver; one has' to solve problems. He points out that one of the ways students can become more skilled at problem solving is bs having active teachers who can demonstrate the process by formulating choices carefully and can illustrate ways in which to deal with proposed problems. We realize that there are many alternative ways to characterize problem solving; however, Polya's emphasfs is plausible and provides rationale for examining ongoing ciassroom instruction.

Similariy, it ares that students are deficient in other important mathematics", "is. Sech "problems" can also be remedied through careful cbaervation experimentation (for some recent work on estimation skills;

There feample documentation from the mid 1970 's and eariy 1980's that we can gain vaiuabie information by studying competent teachers. Several extensive research programs funded by the National Institute of Education provide observational evidence that teachers vary in how they think, act, and use time in the classiroom. Furthermore, these varlations among teachers have been related tō stüent achievement in several field experiments (see Gage; 1983; Brophy; 1979; 1983; and Good, Grouws; and Ebmaier; 1983).

We know considerably more about claz sroom teaching than we did a decade ago. In 1973; our information about the effects of classroom conditions on student achievement was weak and contradictory. In the ensuing ten years research (much of it influenced by funds and coordination from the National Institute of Education) on basic skill Instruction, especialiy in reading and mathematics; has wion from a state of confusion to a point where several successful experiments have been conducted. These studies; in contrast to less sophisticatec and often methodologically flawed research that took place in the past; illustrate that teacher behavior can siguificantly affect student achievement.

Furthermore, there is evidence that the skilis effective teachers use can be taught to other teachers: In buiddng a program of active mathematics teaching, Good and Grouws (1979) began by observing how more and less effective teachers (using student performance as the operational definition of effectiveness) taught. We combined this information with other research in order to butld a teaching program that could be tested in intact classrooms. Finding showed that the program thà most teachers could implemey": pry yogram without much dificulty. We felt that too wuch wathematics voin in siementary echools invives a bitef teacher presentation and a long periç of seatwork. Such bríef explanations before seatwork dó not allow for meaningful and succēssful practice of concepts that have been taught; and the conditions necessary for students to discover or use piniciples on their own are aiso lacking. The program helped some teachers to overcome these problems.

The argument here ta that much can be learned from the serious study of pinactice. As Fiowers, Laniér, and Ke.liy noted, many withs about educstional. practice exist; in part because we possess few data with which to describe practice. What datā we do have indicate that teaching practice $1 \bar{s}$ much more varied than most people currently kelleve and hence, simple, generallzed recomendations (e.g.; increase time on task) will do "iore harm than good. Some participants at this conference sugsested that teachers need to taik less and let students do more science. However, in many classroomg, teachers hardiy talk at all and students are left to complete dismal "science" worksheets. In such classrooms; teachers shouid taik more (about the meantug of science; the concepts being studfed) and studenta do not need to do more, science, but a different science. Curricuium reform without descriptive research is; in our opinion, seif-defeating.

Although much recent research examines basic skill instruction; ©here is reason to believe that other processes could be effectively studied by the observation-ćevelopment-fieid experiment research approach described above If goals of curriculum reform and key concepts are identified; research could be directed at these areas.

The focus of such future work should not be limited to teachers: A similar observational model for understanding mathematics learning has been used by Krutetskil (1976) to study how excellent students attempt to learn mathematics. A1so; as noted eariler; a growing number of researchers are interested in student behavior (ég., time on task) and perceptions (Do they view prōlem-solving assignmente as a challengeis), and such work can heip to make instruction more éffective (seee fō examplé, Péterson and Sūng; 1982; Weinstein, 1983).

Many strategiē for promoting effective learning are not comon aspector of classroom practice and thus the study of practice is not the only way to bring about desirable change. For example, Rosenshine (1983) demonstrates that succesgful school programs can be achieved through systematic thinking and development independent of sustained observation of teachers.

Our purpose here is not to ídentify research areas, questions; ōr paradigms that merít support. We do wish to suggest a general dúrection whích we believe some future research siouid take.

Past research has been almed at the curriculum; or teachers; or students. As we stated earlier, if research is to be effective; its context must be

 $\overline{s t u d i e d ~ a s ~ w e l l ~ a s ~ h o w ~ t e a c h e r s ~ a n d ~ s t u d e n t s ~ t h i n k ~ a n d ~ b e h a v e ~ w h e n ~ t h e y ~ s t u d y ~}$ particular concepts: Furtherwore; curiculum research tends to examine content; sequence; and pace issues and to ignore what teachers and students do when they actually study curriculum.

We also belfeve that teachers an students need bettē science textbooks and teachers need manuals to help them understand the concepts and processes
 tēachiņ̄/lēarning ēnvironment̄; students' scientific litéracy will not improve.

More complete theories of instruction in unthematics and science (and of instruction generaily) must aiso be developed. Eee Shulman suggeated át this conference that there should be more structure to ciassroom instruction, and that students' understanding and knowiedge of a subject shouid accumuiate and deveiop over time. Accōning to Shuimeñ, the last short story taught in an English class or the 1ast unit in an algebra course should be taught/learned
 learned concepts; principlēs, and procedures for analyzing storiē and problems. However, we have no instructional theoriē which enable us to exxamine thēe issues and little extant empirical data upon which to build such theories:. As Bruner (1966) noted; a theory of instruction needs to describe the ways in which knowledge and concepts can be effectiveiy sequenced so that students' understanding of instruction is enhanced.

Recognition of Teachers

In a variety of ways conference participants expressed their belief that teachers need more pay, recognition; public rupport; and better working condichons. We agree. Many teachers have diffic it jobs, are poorly paid; and are frequently the targèts of societal ciz iciam. However; we must recognize thā there $1 \bar{s}$ variation among teachers. Unforturaeiy; educatorss rēēarcher \bar{s}, the public, and even teachers suggest that most teachers behave alike and have similar effects (whether positive or negative) on studenta. For esamplé some conference participants suggested that teachers are not capable of modeling probiem-soiving strategies; and other researchers indicated that most teachers teach mathematics in the same unproductive fashion.- Others sugsested that the study of teacher behavior has been unproductive and recommend that research address other areas. We submit that these generalizations about teachers and teaching often result from the failure to recognize varlations in teaching performance. In reality, ome teachers are worthy of emulation and others are not; some offer exciting; productive ćlassrooms and others classaooms are poorly organized and taught; and ifttie productive 1earning occurs.

Because of society's failure to recognize and to reward satisfactorily competent téachers; many, teachers (particularly the best ones) have left. teaching : They do not want to work at an occupation that has low pay, littie intellectual stimulation; and little opportunity for advancement: As Wimpeiberg and King (1983) state; "To endure the conditions accompanying iffe as a tejcher; the person must have elaborate support systems, upusualy high commsment to the roles and tasks of the job, or on the negative side no reci occupational alternatives" Many conference participants pointed out that teacher salaries (especiàiy those of experienced teactiss) are too low and that teachers continue to obtain alazy inerements that are conaiderably less than those of other whte-collar workeris. There appeart to be widepread and growing dissatisfaction among teachers with their pay and profesaiomal status.

Schiechty and Vance (1983) present data which indicate that too many of the most effective teachers are leaving the profesaiow and that many students with higher aptitudes rio longer enter teacher education programs. Despita evidence that the pool of bifght students seeking enrollment in teacher. education programs is declining, some teacher education programs still attract qualified candidatē: For examplef at the Uuiversity of Missourfo sudents who enter the teacher education program rank at the 70 th percentile of their high school classes (thī figure, has remained stable for 10 yearia).

Though we face a sérious problem at present; it is stil savable one However, after another two to fiv̄e yearis of neglect (particulariy of the salary issue) and the foss of a higher percentage of capalie teachers, the situation may become umanageable Because of a decine in the overall quality of teachers; it is more difficult for an individual taacher to be effective. Furthermore; because of increasad public conceri over the performance of public schools; there is a growing unwilingness to fund public education.

There is much that can and shouid be corrected in many teacher education programs and in publíc schools. Besides increased pay, there are othér way \bar{s} In which téachers can be compensated. For example, more documentātinn of teachers' preferences concerning the conditions and professional dutiē associated with teaching would be useful. Among the many options that could be used to improve teaching conditions: summer employment opportunities in Business or industry; reducing record keeping and other clerical dutfes; three to foir hours à week during the school day for planing; release time to observe other téachèrs, discuss instructional strategies, and vew ciassroom fllme with other teachers; the chance to spectalize (Why should eiementary school teachers be asked to be knowiedgeable in several subjectar); helping educators and researchers to develop curricuia; free college tuition for computer and sctence ciasses; more finvoivement by college and business personnel in actual ciaseroom fustruction; and preparation of learning alds. Aithough miat curreat iegisiation le intened to encourage persons to become mathematics and science teachers; the concitions of teaching musst be altered so it becomes a more challenging; interéstigg occupation. we are especially éncouraged by proposals that advocate bringing non-tēacherē tô the classtoom to share knowledge and expertise.

In the final section of the paper; we would like to di iss a salary plan that has received coisiderable attention; and the possibit of national \bar{s} tudy and dēvelopment to help guide local school districts in deving salary plāns and allocating resources.

Master Teacher

We have suggested many ways in which teaching can be made more attractive and prestigious: serious study of teachers; the sharing of teachers. successes with the public; raising salāiē; improving working conditions; and aitering teachers' duties (rolē). Yet another way to improve teachers' morale and classroom performance, and thus to attract more talented persons to teaching; is to identify and reward exceptinasl teachers:

Teāchers who achieve excellence in cilassroom instruction, curriculum sevelopment, and supervision and training of other teachers should be identifled and rews ded: Unfortunately, teachers who have taught for geven to ten years and pho have bimilar training receive similar compensation, irrespective of whether they work 35 hours a week and perform dismally. in the classroom or work 75 hours a week and perform superbly. The reward structure of teaching ts fiat (unstaged) and salaries are usually based on years of claseroom reaching and the number of post-graduate courses completed. There is ittie opportunity for advancement, and nost teacners reach the aper of the salary achedule in about 15 years. At the conference, Terrei Beil, Secretary of the Department of Education, also advocated increased pay for'master teachers.

However, the potential advantages of à Master Teac. alan are not āsured, and all incentive plaus have prōblems. participants àt this conference argued that the problem facing American schools was a decilne in general teacher morale and that this problem needs actention if the teacher shortge in mathe matics and science is to be remedied. The present pay of average teachers is
much too low, and if funds Sor master teachers' alary increases come at the expense of upgrading teachers salaries generally (a common teacher objection to this plan), generai teacher moraie is ifkely to be negatively affected. However, most differential pay plans proposed to date require that funds bep added to educiational budgets; money is not being taken from some teachers pay others. To the extent that funds for master teachers are part of a \bar{p}. t ϕ increase the salaries of all teachers (at least to some degree), this is an encouraging strategy to explore.

Others àrgue that decisions about who should be designated master teachers W11 cause dissension among teachers. First, many teachers belleve they are outstanding teachers and will be disappointed when not selected as master teachers:. Furthermore, some fear that the criteria for selection will reiate more to political saṽy than to teaching skill or subject matter kiowledge. However, the obvious fact that reliable criteria will be difficult to éstabísish does not mean that we should not try to define levels or stages of professional advancement in tēaching: We must be certain; though; to define the criterla carefuily, revise and revtew such criteria periodicaily; and sēriously study relatés issues (who bets the criteria; how judgments are actually made) if such plana are to work.

While rewards for teachers are important; a large meāsure of the value of such a plan lies in the discussion it ancourages about what constitutes excellence in teaching as citizens; public officials; teachers; and teacher educators debate this issue. A focus on excellence in teaching would help to identify positive aspects of schooling and enable the public to become more aware of the complexities of teaching. An increased public awareness wight lead to greater gains for all teachers (i.e., an increased public wilingness to fund higher salaries). Further, master teache Fiane could add to our kncwiedge of ciassroom practice and increase our tcity to iliustrate to other teachers strategies thet are particularly, esting or efsective. For example, master tischers could use videotapes of it classriom performance; curciculum units they have developed, or studeni.. pro icts in order to assist in the training of other teachers.

We suspect that mastēr teacher pians, wili have more éfecte in some schooi districts than in others and that in coo many cases fund wili ke spent in ways that will not ensourage or reward competent teachers. Many plans address the $1 \boldsymbol{m}_{\mathrm{r}} \mathrm{c} \boldsymbol{c}$ example; Schlechty and Vance; 1983). However; añ jamediaté attempt tó identify and examine issues and problems associated with the implementetirn of master teacher plans and aiternntive ways of responding to these probl ans would invoive money veli spent to provide important technical and conceptual supnort
 reward those school prasesses and products that they value; it दeens a waste tc require èvery schoci deātict to addreses a number of sophisticated techntcal
 money is nec ssary for rea Incentive?), sociologists (how can the potentially atvisive effects of compritition be mintmized? How should caresr ladders be structured?); as well \&s classrocm researchers; subject matter specialiste; and measurement apecielists. If the plan is to work, seripus conceptual study must occur. It will probebly be necessary to define several stages in the téching career ladder (each involving extra c"ipensation) towará íie final
 expañ to iñlude curriculum development; assisting with research; and supervision and training of otier teachers.

Conciusion

The shortage of qualified mmathematics and science teachers is an important
 evidence that science $\bar{i} \bar{s}$ ínf requentiy taught in élementary schools (ég., Ebmeier and Ziomek, 1983). Furthe=more, participants at this conference generally agreed that instruction in mathematics and science is often inadequate, howevér, because of à lack of résearch in this árēa, fēw participants dēcribed specific changes malch are needed. Not only do we need fore and better quālifiéd téachérs, we must also have improved curricuila, textbook $\overline{\sin }$, instructional theories, and procedures for making mathematics and scieace more meaningful: Although it may be appropriate that some additional time ahould be spent on mathematics and science instruction; the quality of the curriculum and the quality of teaching should be our most important concern.

Béfore science and mathematics curricula and instruction āe aitered éffectiveiy, however, ēucators; researchers; mathematicians; citizens; and teachers must comprehensively assess the curriculum and instruction currently offered in American schools in order to make intelligent decisions about changes which arē necēssary. This ises because we not only need citizens who
 the ability to sxpress thenselves; snd an appreciation of and skills necessary for participating in the denocratic process; etc-

It io clear that the entire American pubifc school curriculum needs serious acury- We believe that many courses in the present curriculum are unneeded ar. that evaituation and reform of general curicula are necessary $\bar{s} \bar{t} \bar{p} \bar{s}$ if we $\bar{a} \overline{r e} t \overline{0}$ take appropriate actions in reforming mathematics and science curifula.

Long-teri solutions are pos̄ible and fundz should be invested in national rēsearoh and development: The problems related to curricula; teacher $\bar{s} h o r t \bar{a} \bar{e} \bar{s}$, technolog \bar{y}; and instruction are general ones: Local school districts currenty have limited options for addressing such issues (ē. $\overline{8} \cdot$. they can chivose among poor curriculum series). However; State and local distifcts czil atilize the resuits of national research and development to cxamine more siternatives and criteria for making decisions about improving curriculum and instruction.

REFERENCES

Biddle, B., $\dot{\varepsilon}$ Anderson, \bar{D}. Theory, knowledge and research on teaching; Technical Report 7277 : Center for Research in Social Behavior; Universfty of Missouri; Colurabia; MO; 1983.

Brophy; J. Teacher behavior and its effect. Journal of Educational Psynhology; 1979; 71, 73.3-750.

Brophy; J. How teachers influence what is taught and lesrned in ciassinoms: Elementary School Journa1; 1982; 83, 1-13.
Brophy, J. Classroom orgañ.zation and managemeft. Elementgry School Journaí, March 1983, 83, 265-286:

Bruner, J, Toward a theory of finstruction; Cambridge, Mî: Harvard University Press, 1966.
 £nterfere with scieqce learning. Elementary School Journal, in press.
 f. , igt: iel Institute of Education Grant NIE-G-0-0892, February 1983; re, finc li nulic Schools.

 Schwile, J.R: Do textbooks ind tests deffne a nationai curricaium in alerontary school mathematics? Elementary School journai; in press.

Gaç, N., $\bar{\alpha}$ Siaconia, R. Teaching practíce and studeut achievement: rausal connections. New York U-iverstty, Educational Quarterly, 198.; 1: . 2-3.
 expezimencal study in ínurth grā le clās̄rooms. Journal of Educational Psyshology, :979. 71: 355-362.

Good, T.; Grouws, D., \& Ebmeier; H: Aative machemacics teaching: Longmān, Inc., New York; 1983:

Krutetskil; v. The psychology of mathematical abilíies in school inildren. Chicago; University of Chicago Press; $197 \overline{6}$.

Feterspn; P. \& Swlng; S. Beyond time on task: Stionents' reports of "heir thought processés during inassroc-: instruction. Elemén=ary School Journal, 1982; 82; 481-491.

Poyiq, G. Mathematical ilscovery:-On understanding ${ }^{\circ}$ exming; and teaching problem-801ving. Nē "ork: John wiley; 1966.

Reys; R.; \& Sestgen; B. Teaching and assessing computational estimation skills; Elementary School Journal, 1981, 82, 117-127.

Rosens fine, B. Teaching functions in instructional programs. Elementary School Journal; March 198?; 83, 3ミ j-351.

Schlechty; P.; $\dot{\text { q }}$ Vance; v. Recruitment; selection and retention: The shape of the teaching force. Elementary School Journal; March 1983; 83; 469-487.
 GPO, NPG SE 78-74.) Washington: D.C.: U.S. Government Printing Office; in \boldsymbol{n} ?

We.

Winpelderḡ, $R, \not \subset K i \bar{g}, \bar{J}$, Rethinking teacher recruitment; Journal of Teacher Education; January-February 1983; 34 5-8.

CONFERENCE CONTRIBUTORS

- iili Aldridge. Executive Direcior

National Science Teachers Association
1742 Connecticut Ave., N.W:
Washington, D.C. 20009
(202) 328:5800

Juanità Bronaugh
Director of Affirmative Action Program
Argonne Natlonal Laboratory
9700 S. Cass
Argonne: Illinols 60439
(312) 972-3021

Álphonsé Buccino, Depuity Director
Office of Scientilic and Engineering
E grsonnal and Education
National Science Foundation
Washington, D.C. 20550
(202) 357.7425

Steve Davis
Head of Mathematics \& Computer Science The North Carolina School of Science and Mathematics
West Clab \& Broad Street. P.O. Box 2418
Durham, Norih Carolina 27705
(919) 683-8584

Jack Easley
Prolessor of Teachar Education College of Education
Department of Eisir:Antary and Early
Childhood Education
1310 South Sixth Street
University ol illinoís Urbana.Champaign
Champalgn; illinois 61820
(217) 352-6934

Odas V. Elliot
Associate Directc: for Asedemic Program
Aplona Bcart or Regents
1535 West Jefferson. Suite 121
Phoenix, Arizora 950' ${ }^{-1}$
(602) 255-40t.

Anne Fiowers
Dean
Sehool ni Education
G rgia Southern Cullege
Si. ásboro, Gecrgla 30460
(912) 381.5383

Roy róbes
Associa'g Executive Direcior
Educatior Commission of States
1860 tincolis
Denver, Colorado 80295
(303) $830-3600$

Antane Gattuat
Chairnan
Equcation Dopartm.
Xavier Univer sity of =- jisiana
Paimetto and Pine Sis.
vau O-mans, Louigiana 70125
(
Triumás isood
Protessrji $\overline{8}$ Assistint directer
Center for Research un Sot di Beha:io.
University of Missouri
111 Stuart prat
Columbia, Mhissoü' 5201
(314) 882.7833

Lynn Gray
Vice President, Éducation Programs
New York Urban Coalitlon, Inc.
1515 Broadway
New York. New York 10036
(212) 921.3500

Rosāayñ S. Hēyman
Ássistant Superintendent of Secondary
Education
Los Angeles Unified School District
P:O. Box 3307
Lós Angelés, Califói nià 90051
(213) 62.6403
E. B. Howartoñ, Jr.

Aesociate Superintendent for Personnel \&
Administrative Fièld Servicē̄
Commonwealth ol Virginia
Department of Education
Richmond, VIrginia 23216
(807) 225-2027

James Kelly, Jr.
Dean
College of Education
5 TO1 Fortess Uuadrangle
University of Pitisburgh
Pittsburgh: Pennsylvania $15 \overline{260}$
(412) $\mathbf{6 2 4 - 6 1 5 2}$

Jeremy Kilipatrick
Professor
Mathematics Esucation Department
105 Aderhold Hall
Universilty ci Goorgia
Athens, Gooiglà 30602
(404) 542.4194

Jüdith Lanier
Dean
Coliege of Education
501 Erickson Hall
Michigari State University
East Lansing, Michigan 48824
(517) 355-9608

Andrew Porter
Co-Directior

252 Erlckson. College of Education
Muchigan State liniversity
East Lansing: Michigan 48p24
(5:7) 353-5091
Rustum Rox
Chairman
Seience: Tectine! Finy and Society Prcgram
Pennsylvania State Universily
Preisontly Science and Püblli; Pollcy
Follew a: Brcmikings insitituti,
Wushieriun 5.C.
(20ㅈํ Tร7
Naams Sabar
f 'essor, Schoc. of Education aviv Universi.;
israel
Presently at 1703 Shawnee Trall
Mäitiand. Florida 32751
(305) 644.9765

Douglas Sasger
Cuirriculüm Coordinatos
Rochester. Now York City EThools 8
industriai Mankigement Co:nril
12 Mortimer Stroet
Rochester, New York 14604
(716) 325-5139

Pātricià M. Shēll
Superintendent for Insatruction
Houston Independent School District
3830 Richmond Avenue
Houston, Texas 77027
(713) 620-5581

Lēē Shulman
Protessor of Education and Psychoiogy
School of Educatlon
Stanford University
Stanford, Calliornia 94305
(415) 497-3175

Robert Stake
Professor, College of Edocation
Canter for Instructional Re-gearch \&
Curriculum Evaluation
1310 South Sixith Street, Room 270
University of lllinois
Champaign; Illinois 61820
(217) 333-3770

Wilson R. Talley
Vice Chairman
Army Science Board
1 Clipper HIII
Oakland; California 94618
(916) 752-0380

Charles Thomas

Superintendent
North Chicago Pubile School

Distict 64

2000 Lewlis ave.
North Chicago, Illinois 60064
(312) 889-8150

Eonnio Vandorn
Executive Director
Association of Sclence-Téchnology

Centers

1016 16th St., N.W.
Vashington, D.C. 20036
202) 452-0855

Betty M. Vattar
Executive Director
Scient noower Commission
1776 Massachuset1s Ave., N.W.
Washington, D.C. \&oc36
(202) 2:3-6995

Wayno Welch

Professor of Educational Psyctiolagy
Director, University ui minnjsota Rescarch
and Evalustiora ids.iter
210 burtón Hall
178 Plilsbury Drive, S.E
Mtnneapolis, Minnesotā 55455
(612) 376-5277

Jamss wi wison
Profeseur and Chairms.
Dapentinen! of Siathematics Educatior.
10 Adeitiold Hall
'riviversity of Georgla
Athens. Georgia 30802
(404) 542-4194
nobert Yag完
Professo:
Sclence Education Center
Uri .esty of lowe
© 50 Van Allè Hall
¿wa Clity, lowa 52242
(319̆) 353-3800

A copy of iffe proceedings submitted to the ERIC Sȳstain is āvailable jñ two forms: paper copy (a reproduction of the document in approximately the original page size) and microfiche (\quad $4^{\prime \prime}$ 天 $6^{\prime \prime}$ sheet of microfilm): Copy costs are based on the nurber of pages In the document. Copies are secured by coctactirg:

ERIC Document Reproduction Service P.O. Box 190

Arlington Virginia 22210
(703) 841-1 212

[^0]: *For example, Japan has a national guideline that 25 percent of instructional time in grades 7 through 9 be devoted to mathematics and science. The Soviet Union has national elementary and secondary curriculums in mathematics and science, and Germany has a standard curriculum for ail studente. In contrast, in the United States, most students take no mathematics or science beyond grade 10, oniy one-third of the 17,000 schooi districts require more than 1 year of mathematics or science to graduate, and classroom laboratory facilíties àn equipment ace obsolete andor unsuitable for moderin technicā training.

[^1]: *An obvious improvement would be the production of 2-minute spots for use on television to achieve the same result:

[^2]: *The authors are grateful to Tom Cooney, Ed Davis, Linda Ginn, Larry Hatfield; joe Hooten, Jeremy Jordān, Lāurie Reyes, and Sigrid Wagner for suggestions and comments on an eàrliér vérsion of othis paper:

[^3]: Iof the 508 in whemaics, 300 are tuli=time machematica eeachera; of the 89 in science; 72 are full-ine sciencè teachē.:

